Reading time: 4 min

 

Sympathetic Arousal and Heart Rate Variability

Understanding mental health and stress management is crucial for clinics aiming to improve patient care and deliver better mental health outcomes. Two critical metrics in this area are Heart Rate Variability (HRV) and Sympathetic Arousal (SA). HRV measures the variation in time between consecutive heartbeats, reflecting the balance between the sympathetic and parasympathetic branches of the autonomic nervous system (ANS). The parasympathetic system helps the body relax and recover, while the sympathetic system prepares the body for action, often called the “fight or flight” response.

Parasympathetic vs Sympathetic Branch

Assessing the parasympathetic branch through short term HRV is relatively straightforward as it involves analyzing the time-domain (e.g., RMSSD) and frequency-domain (e.g., high-frequency power) components of heart rate signals. Short term HRV represents a complex relationship between the sympathetic and parasympathetic systems (Shaffer, 2017). This influence is generally consistent and can be easily isolated, making it more straightforward to evaluate ”rest and digest’ activities compared to the complexities of measuring the sympathetic system.

While HRV can provide some insights into the body’s autonomic function, it is not a reliable marker for directly assessing sympathetic arousal, or the body’s response to stress. Measuring the sympathetic side of the ANS is challenging because its signals often overlap with parasympathetic signals and are highly variable. The sympathetic nervous system (SNS) triggers rapid physiological changes in response to stress, such as increased heart rate, vasoconstriction, and heightened alertness. Unlike the parasympathetic system, which can be measured under controlled conditions, sympathetic activation is dynamic, context-sensitive, and transient. These rapid, variable responses are difficult to capture consistently using HRV alone, as HRV lacks the specificity to distinguish between sympathetic and parasympathetic contributions in real-time.

Introducing Sympathetic Arousal

We introduce Sympathetic Arousal (SA), a precise and sensitive marker for real-time stress and anxiety management. SA provides targeted insights into stress responses, enabling timely interventions for well-being. Clinics can use SA to track, understand, and respond to patient stress, leading to more effective treatments and improved mental health outcomes.

How is Sympathetic Arousal Measured?

During stress or excitement, the body’s nervous system causes the tiny blood vessels in your skin to tighten, reducing blood flow. This is part of the “fight or flight” response, preparing the person for action by sending more blood to the muscles and heart. When you’re calm, your skin gets more blood flow, and when you’re stressed, less blood flows to the skin. This change in blood flow can be used to measure how stressed or emotionally aroused a person is—this is the essence of Sympathetic Arousal measurement.

We are excited to have partnered with Philia Labs, developer of a cutting-edge AI-powered algorithm using Biostrap’s high-definition PPG Waveshape features to track these subtle changes in blood to measure Sympathetic Arousal.

This algorithm has been trained on stressor timings (Udhayakumar et al, 2023) and microneurography (Rahman et al 2024, under review) , a gold-standard technique that records real-time nerve activity by inserting a microelectrode into a peripheral nerve. This invasive method directly measures the signals in the sympathetic and parasympathetic nerves, offering precise insights into the autonomic nervous system’s activity. By leveraging this AI-driven measurement method, we can access previously unattainable insights with HRV alone.

Measuring Sympathetic Arousal and HRV Together

By combining HRV and Sympathetic Arousal measurements, clinics gain a more comprehensive understanding of physical and emotional stressors affecting their patients. This dual approach enables earlier interventions and more personalized wellness plans, which can translate into better patient outcomes and overall mental health improvement. Key benefits include:

  • Detecting early signs of chronic stress and anxiety by identifying physiological changes that are linked to prolonged stress responses. This is key for preventing burnout and maintaining employee well-being.
  • Providing more accurate mental health assessments beyond HRV.
  • Identifying specific stress triggers for better management and coping strategies, allowing clinics to understand what stressors may lead to heightened arousal in patients and adjust treatment plans accordingly.
  • Removing guesswork from evaluating intervention efficacy by objectively measuring changes in sympathetic and parasympathetic arousal. Improvements in sympathovagal balance can ensure that treatment efforts are making an impact on health and well-being outcomes.
  • Benchmarking best practices for increased ROI by determining which wellness strategies provide the most effective reduction in stress and improving overall employee outcomes.

 

Monitoring Fatigue

Fatigue is a state of physical or mental exhaustion that results from prolonged activity, stress, or lack of rest. It can manifest as reduced energy levels, impaired concentration, and diminished physical or cognitive performance due to prolonged sympathetic dominance (Tanaka, 2015). Benefits of monitoring both HRV and Sympathetic Arousal can be helpful for fatigue in the following ways:

  • Spotting physical and mental exhaustion patterns early, allowing for proactive adjustments in workloads or daily routines.
  • Tailoring fatigue management strategies at scale to improve overall well-being by creating individualized treatment plans that consider the recovery and arousal aspects of a patient’s health.

How Sympathetic Arousal Can Be Used For Your Business

Sympathetic Arousal (SA) is more than just a stress metric—it’s a powerful tool that can transform mental health care, performance optimization, and stress management across various fields.

Healthspan & Longevity Clinics: Chronic stress accelerates aging by over-activating the sympathetic nervous system, leading to inflammation, oxidative stress, cellular damage, and increased risk of age-related diseases like cardiovascular issues and cognitive decline. Monitoring Sympathetic Arousal (SA) helps detect and manage stress early, enabling healthspan clinics to create personalized plans that slow aging, enhance recovery, and promote long-term vitality for healthier, longer lives.

Elite Athletes: Stress disrupts athletic performance by impairing recovery, increasing the risk of injury, and reducing focus and endurance due to prolonged sympathetic nervous system activation. By tracking Sympathetic Arousal (SA), excessive stress can be identified, allowing athletes and coaches to optimize recovery, balance training, and minimize the risks of burnout and injury.

First Responders & Military Personnel: Chronic stress and fatigue in first responders (e.g. Police, firefighter, EMTs) and military personnel impair decision-making, reduce endurance, and heighten the risk of injury or burnout. Prolonged exposure without recovery increases vulnerability to PTSD and other mental health issues, impacting long-term resilience. By monitoring Sympathetic Arousal (SA) in real time, stress can be managed during critical operations, improving performance and reducing the long-term risks of burnout and PTSD.

Book a meeting

Do you have a data-driven business looking to use cutting-edge AI-power wearables? 

Get in touch with us!

 

References

Shaffer, F. (2017, September 28). An Overview of Heart Rate Variability Metrics and Norms. PubMed. Retrieved October 11, 2024, from https://pubmed.ncbi.nlm.nih.gov/29034226/

Tanaka, M. (2015, September 29). Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. NCBI. Retrieved October 11, 2024, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621713/

Udhayakumar, R. (2023, August 30). Measurement of stress-induced sympathetic nervous activity using multi-wavelength PPG. Royal Soc. Open Science. Retrieved October 11, 2024, from https://doi.org/10.1098/rsos.221382

Ziegler, M. (2012). Chapter 61 – Psychological Stress and the Autonomic Nervous System,. Primer on the Autonomic Nervous System (Third Edition). Retrieved October 11, 2024, from https://doi.org/10.1016/B978-0-12-386525-0.00061-5

 

 

 

 

Reading time: 3 min

At Biostrap, we’re thrilled to announce that our cutting-edge wearable technology, Kairos, is now eligible for purchase using Health Savings Account (HSA) or Flexible Spending Account (FSA). Our partnership with Truemed makes it possible for you to enjoy significant tax advantages.

Whether you want to access high-fidelity PPG data to track sleep, biometrics, and nervous system state, or interested in superior data to help build AI-powered predictive health models for physical and mental health monitoring, it’s just become a lot more affordable. Grab the 3- or 5-Pack Biostrap Kairos Evaluation Kit using pre-tax dollars.

What does it mean? 

When a wearable technology device like Kairos is “covered by HSA/FSA funds,” it means that you can use the funds from your HSA or FSA to purchase the device. Both HSAs and FSAs are tax-advantaged accounts that you can contribute to and use to pay for qualified medical expenses. Here’s a brief explanation of each:

Health Savings Account (HSA):

  • An HSA is a tax-advantaged savings account available for individuals with high-deductible health plans.
  • Contributions to an HSA are tax-deductible, and the funds can be withdrawn tax-free if used for qualified medical expenses.
  • HSA funds can be used for a wide range of medical expenses, including prescription medications, doctor visits, certain medical devices, and now the Biostrap Kairos.

Flexible Spending Account (FSA):

  • An FSA is another tax-advantaged account that allows employees to set aside a portion of their pre-tax earnings for qualified medical expenses.
  • FSA funds must be used within the plan year or a grace period, and they can cover eligible medical expenses such as co-pays, deductibles, certain medical products, and now the Biostrap Kairos.

Using HSA/FSA funds provides a financial benefit as contributions to these accounts are made with pre-tax dollars, effectively reducing the overall cost of the device.

Here are six reasons to use your FSA/HSA dollars for Kairos

  1. Tax savings

When it comes to your health, every investment matters. By using pre-tax dollars, you not only maximize your tax savings but also make a smart and affordable investment toward your health monitoring efforts.

  1. Affordable access to advanced health technology

Kairos isn’t just a sleep tracker; it’s a comprehensive health companion that helps you better understand your autonomic nervous system. With FSA/HSA coverage, you can now grab the 3- or 5-Pack Biostrap Kairos Evaluation Kit without breaking the bank. Experience the power of physiological biometrics, sleep analysis, and the innovative Spot Check feature that provides real-time insights into your autonomic nervous system balance – effectively a window into optimizing your mental health resilience.

  1. Superior data quality for remote patient monitoring

For healthcare professionals, Kairos offers an unparalleled tool for remote patient monitoring. Keep track of patients’ biometrics, sleep patterns, autonomic nervous system state, and overall health with advanced remote monitoring. This not only helps to improve patient outcomes but also allows for early intervention and personalized care.

  1. Optimizing training for peak performance

Unlock the full potential of your team’s training programs with Kairos. Track individual and team progress, identify areas for improvement, and tailor training regimens based on personalized data. The advanced analytics provided by Kairos empower coaches to optimize training strategies for increased performance.

  1. AI-driven insights for unprecedented precision

Kairos and the accompanying Vital Science app are built to be a platform for innovation. With Kairos’ capability to gather extensive high-fidelity PPG data, it serves as a valuable tool for developing new AI-driven algorithms. Contribute to the future of health technology by using Kairos and our Waveshape feature to refine and develop algorithms that can provide unprecedented insights into personalized medicine, diagnostics and health monitoring.

  1. Proactive health management made easy

Stay ahead of potential health issues with Kairos. Its high-fidelity data capture and personalized insights empower you to be proactive in managing your health or the health of those you choose to monitor remotely. By using your HSA or FSA funds, you make a smart investment in a device that goes beyond traditional health tracking, offering a holistic approach to well-being.

Now is the time to make the smart choice for your health. Use your HSA or FSA funds to invest in Kairos and experience the future of personalized health technology. Maximize your tax savings, embrace proactive health management, and join a community that prioritizes collective well-being.

To purchase using your FSA/HSA funds, select the 3- or 5-Pack Kairos Evaluation Kit, go to checkout, scroll down to “Payment”, past “Delivery” and “Shipping method”, and check ​​”TrueMed – Pay with HSA/FSA”. After clicking “Pay now”, you will be redirected to TrueMed – Pay with HSA/FSA to complete your purchase securely.

Reading time: 3 min

The advent of digital health and research has has opened up new frontiers in healthcare delivery, diagnosis, treatment, and disease prevention. One central element that fuels this digital revolution is data. Data has become the lifeblood of digital health and research, driving insights, innovation, and improved patient outcomes. However, the potential of data can only be fully realized when there is transparency.

What is data transparency

Data transparency refers to the ability of all stakeholders to have access to and understand the data that is being used. It is about making the data freely available and clear for everyone to see, without hidden agendas or misuse. This transparency is critical to foster trust, enable collaboration, and ensure accountability in the digital health landscape.

They can see where the data comes from, how it is processed, and how it is used. This transparency empowers everyone to make informed decisions, enhances collaboration, and fosters trust.

The importance of data transparency

The value of data transparency in digital health and research cannot be overstated. It forms the foundation of trust between patients, healthcare providers, and researchers. When there is transparency, patients are more likely to share their data, knowing that it will be used responsibly and for their benefit. This trust is crucial for the success of digital health initiatives.

Data transparency also leads to better research outcomes. When researchers have access to transparent data, they can conduct more robust analyses, develop novel algorithms, make accurate predictions, and develop innovative solutions and even discover new biomarkers.

That’s why transparency is one of the core values of Biostrap in how it provides access to data that’s captured by its wearable, Kairos. This transparency enables collaboration, as researchers can share their data and findings, leading to greater scientific progress.

Moreover, data transparency can help to ensure accountability in the digital health space. It allows for the tracking and auditing of data, ensuring that it is used responsibly and ethically.

This accountability can help to prevent data breaches and misuse, protecting the privacy and rights of patients.

The missing link: data transparency in wearables

Wearables, including fitness trackers, smartwatches, and health monitors, collect a wealth of data about our bodies and lifestyles. This data can provide valuable insights into our health and well-being, enabling personalized healthcare and proactive disease prevention.

However, there is a missing link that threatens to undermine their value: data transparency. Many wearable companies operate in a black box, with little transparency about how they collect, process, and use the data.

This lack of transparency raises concerns about the privacy, security, and ethical use of the data.

That’s where Biostrap’s team wanted to bridge the gap and be a fully transparent digital health solution. At Biostrap, we believe that transparency is key to building trust and fostering collaboration in the digital health space.

Hence, we are committed to providing our enterprise clients with clear, understandable information about how the data is collected, processed, and used. It also gives them control over the data, allowing them to decide who can access it and for what purpose.

It can also enable collaboration among researchers, leading to better research outcomes. Especially so because Biostrap also collaborates with researchers, sharing anonymized data to support health research.

Challenges to data transparency in digital health and research

While the benefits of data transparency are clear, there are several challenges to achieving it in digital health and research. These challenges include privacy concerns, data security risks, and the complexity of health data.

Privacy is a major concern in the digital health space. Many individuals are wary of sharing their health data, fearing that it could be misused or fall into the wrong hands. To address this concern, there is a need for strong privacy protections and clear communication about how the data will be used.

Data security is another significant challenge. With the increasing volume of health data being collected, the risk of data breaches and cyberattacks is high. This risk can be mitigated through robust data security measures and regular audits.

To address these challenges, Biostrap has implemented high-quality data protection measures, built a secure ecosystem that’s fully HIPAA-compliant, and ensures that user and patient data is safe and can never be accessed by a third party.

Reach out to our team to discuss how Biostrap can help get your research project off the ground, or how we can help best implement a successful remote health monitoring program in your practice.

Click on the “Partner with us” button at the top of THIS page to book a meeting with a team member.

Reading time: 2 min

In the pursuit of a happier, healthier life, the journey from mental health to mental fitness is a transformational shift. Mental health is about managing and addressing issues, while mental fitness represents a proactive approach to building resilience, emotional strength, and overall well-being. It’s a path that passes through self-awareness, empowerment, and personalized strategies, and it can be greatly aided by the integration of AI and wearable data.

Understanding the journey

The journey from mental health to mental fitness begins with understanding the fundamental difference between the two. Mental health often focuses on addressing challenges such as stress, anxiety, or depression when they arise. While this is essential and valuable, mental fitness takes a broader approach. It involves actively cultivating a mindset and lifestyle that promote emotional and psychological well-being, making it easier to navigate life’s challenges.

How AI and wearable data play a proactive role in mental fitness

The role of AI fueled by biometric analysis can act as a guide, helping individuals recognize their mental health challenges and encouraging self-awareness. AI can analyze vast amounts of health data collected from wearable devices, such as the Biostrap Kairos, providing insights into emotional triggers and patterns of distress. Armed with this knowledge, individuals can develop a deeper understanding of themselves and their mental well-being.

Building Self-Awareness

Self-awareness is the cornerstone of mental fitness. It’s the ability to recognize one’s emotions, thoughts, and behavioral patterns. AI-powered wearable technology can assist in building self-awareness by continuously monitoring physiological responses to emotional fluctuations. Over time, users gain a clearer picture of their triggers and reactions, empowering them to make more informed decisions.

Tracking Progress

As individuals embark on their journey toward mental fitness, it’s crucial to track progress. Wearable technology plays an important role here, offering real-time data on various aspects of well-being. The Biostrap Kairos device and the Vital Science app for example, offers a Spot Check feature that provides insight into a user’s autonomic nervous system balance. This data allows users to understand to what extent their body is in the mode of parasympathetic (rest-and-digest) or sympathetic (fight-or-flight).

Additionally, monitoring biometrics such as heart rate, sleep patterns, and activity levels, users can visualize their improvements, set achievable goals, and celebrate milestones along the way.

Cultivating mindfulness

The Vital Science app offers guided mindfulness practices as part of the Meditation Plus feature. It doesn’t only helps users incorporate a mindfulness into their lifestyle routine, but each mindfulness session can be tracked using the Biostrap Kairos.

With that, users can gain insights into how their heart rate, heart rate variability, and respiratory rate shift during meditation. These practices teach individuals to stay present, manage stress, and respond to triggers with composure. Mindfulness is a cornerstone of mental fitness.

How Biostrap can help

At Biostrap, we are committed to empowering individuals on their journey from mental health to mental fitness. Our cutting-edge digital health technology combines the precision of AI with the convenience of a wearable to provide you with the tools and insights you need to build resilience, foster emotional strength, and proactively manage your mental well-being.

Our technology continuously monitors your physiological data and offers real-time feedback. It helps you understand your triggers, manage stress, optimize your sleep, and build mindfulness practices into your daily life.

Your well-being matters, and we are here to empower you every step of the way. Start your journey today, and let’s build mental fitness together.

Reading time: 3 min

 

In today’s fast-paced world, stress has become a pervasive problem that affects our physical and mental well-being. Chronic stress can have detrimental effects on our health, leading to various disorders and increasing the risk of cardiovascular problems and mental health issues. For effective stress monitoring and management, it is crucial to accurately measure its impact on our bodies.

Traditional methods of stress assessment, such as physical tests and questionnaires, have limitations in terms of subjectivity and accuracy.

However, advancements in wearable biosensors have paved the way for real-time, continuous monitoring of stress biomarkers, providing valuable insights for clinical diagnoses and personal stress management.

Unraveling the complexities of stress: a holistic approach

Stress, as an intricate and multifaceted physiological response to external demands, triggers the orchestrated release of cortisol, adrenaline, and noradrenaline – molecular protagonists underpinning the “fight-or-flight” reaction.

However, prolonged exposure to stress ushers in a cascade of physiological changes, resulting in disruptions to the harmonious equilibrium orchestrated by the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic adrenal medullary (SAM) axis. These disruptions contribute substantively to the pathogenesis of anxiety, depression, and cardiovascular morbidity.

Beyond traditional metrics: the futility of conventional stress assessment

Traditionally, stress has been measured through physical tests and questionnaires. The Trier Social Stress Test (TSST) is a commonly used test that assesses acute stress levels by subjecting individuals to public speaking and arithmetic tasks. Saliva, blood, psychophysiological, and cognitive measures are then analyzed to evaluate stress levels.

While these tests provide valuable information, they are not without limitations. Variability in test conditions and the subjective nature of self-reporting can impact the reliability and reproducibility of results.

Another widely used method is the Perceived Stress Scale (PSS), a survey that assesses an individual’s overall stress levels based on their perceived life experiences. Similarly, the Kessler Psychological Distress Scale (K10) measures mental distress levels. These tools provide insights into an individual’s subjective experience of stress but do not offer objective measures of physiological responses.

Wearable biosensors: a panacea for stress monitoring

Recent advancements in stress monitoring focus on the quantification of stress biomarkers, which are molecules or biometrics, or physiological indicators, that provide insight into an individual’s nervous system state. Biomarkers can be detected in various bodily fluids, such as blood, saliva, urine, and sweat. Sweat biomarkers, in particular, have gained attention due to the non-invasiveness and ease of collection.

Sweat contains a wide range of metabolites, electrolytes, and minerals that can serve as indicators of stress levels. Cortisol, a glucocorticoid hormone, is considered the gold standard for evaluating the activity of the HPA axis. Other stress biomarkers include epinephrine, norepinephrine, alpha-amylase, and interleukin-6. Electrochemical and colorimetric transduction methods have been developed to detect and quantify these biomarkers in sweat.

Additionally, the Biostrap Kairos, introduces a novel way to assessing autonomic nervous system balance including sympathetic and parasympathetic branch quantifications. Utilizing raw PPG, Kairos captures relevant biometrics including beat-to-beat heart rate data, heart rate variability (HRV) and respiratory rate to allow for in-depth objective data analysis.

Such real-time, seamless, and unobtrusive collection of stress data is highly valuable for simultaneously prioritizing user comfort and feasibility during diverse physiological parameters.

Challenges of sweat measurements

While sweat analysis have shown great potential in stress monitoring, there are still challenges to overcome. The correlation between sweat analyte (or chemical undergoing analysis) concentrations and blood concentrations is complex, and factors such as sweat rate and analyte distribution can affect the accuracy of measurements. Extracting interstitial fluid (ISF) analytes in a non-invasive manner also presents challenges, as extraction efficiency and skin surface contamination can impact accuracy.

Further research is needed to validate the clinical utility of sweat as a diagnostic biofluid for stress monitoring. Improvements in sampling methods and analyte monitoring techniques are necessary to enhance the reliability and accuracy of wearable stress sensors. Integration of multiple sensing arrays and the development of multiplexed wearable sensing platforms hold promise for comprehensive stress assessment.

Innovations toward a new trajectory

Advancements in wearable biosensors have revolutionized the field of stress monitoring. These devices provide real-time, continuous data on stress biomarkers, allowing for personalized stress management and clinical diagnoses. While sweat sensors offer a non-invasive and convenient method for stress assessment, there are challenges that are yet to be overcome.

By harnessing the power of wearable biosensors, like Biostrap Kairos, we can gain valuable insights into our stress levels in real time and any given time of the day and take proactive steps to improve the state of our nervous system.

Did we miss anything?

If you have any questions, suggestions or topic requests, please reach out.

Skip to content