Reading time: 4 min

 

Sympathetic Arousal and Heart Rate Variability

Understanding mental health and stress management is crucial for clinics aiming to improve patient care and deliver better mental health outcomes. Two critical metrics in this area are Heart Rate Variability (HRV) and Sympathetic Arousal (SA). HRV measures the variation in time between consecutive heartbeats, reflecting the balance between the sympathetic and parasympathetic branches of the autonomic nervous system (ANS). The parasympathetic system helps the body relax and recover, while the sympathetic system prepares the body for action, often called the “fight or flight” response.

Parasympathetic vs Sympathetic Branch

Assessing the parasympathetic branch through short term HRV is relatively straightforward as it involves analyzing the time-domain (e.g., RMSSD) and frequency-domain (e.g., high-frequency power) components of heart rate signals. Short term HRV represents a complex relationship between the sympathetic and parasympathetic systems (Shaffer, 2017). This influence is generally consistent and can be easily isolated, making it more straightforward to evaluate ”rest and digest’ activities compared to the complexities of measuring the sympathetic system.

While HRV can provide some insights into the body’s autonomic function, it is not a reliable marker for directly assessing sympathetic arousal, or the body’s response to stress. Measuring the sympathetic side of the ANS is challenging because its signals often overlap with parasympathetic signals and are highly variable. The sympathetic nervous system (SNS) triggers rapid physiological changes in response to stress, such as increased heart rate, vasoconstriction, and heightened alertness. Unlike the parasympathetic system, which can be measured under controlled conditions, sympathetic activation is dynamic, context-sensitive, and transient. These rapid, variable responses are difficult to capture consistently using HRV alone, as HRV lacks the specificity to distinguish between sympathetic and parasympathetic contributions in real-time.

Introducing Sympathetic Arousal

We introduce Sympathetic Arousal (SA), a precise and sensitive marker for real-time stress and anxiety management. SA provides targeted insights into stress responses, enabling timely interventions for well-being. Clinics can use SA to track, understand, and respond to patient stress, leading to more effective treatments and improved mental health outcomes.

How is Sympathetic Arousal Measured?

During stress or excitement, the body’s nervous system causes the tiny blood vessels in your skin to tighten, reducing blood flow. This is part of the “fight or flight” response, preparing the person for action by sending more blood to the muscles and heart. When you’re calm, your skin gets more blood flow, and when you’re stressed, less blood flows to the skin. This change in blood flow can be used to measure how stressed or emotionally aroused a person is—this is the essence of Sympathetic Arousal measurement.

We are excited to have partnered with Philia Labs, developer of a cutting-edge AI-powered algorithm using Biostrap’s high-definition PPG Waveshape features to track these subtle changes in blood to measure Sympathetic Arousal.

This algorithm has been trained on stressor timings (Udhayakumar et al, 2023) and microneurography (Rahman et al 2024, under review) , a gold-standard technique that records real-time nerve activity by inserting a microelectrode into a peripheral nerve. This invasive method directly measures the signals in the sympathetic and parasympathetic nerves, offering precise insights into the autonomic nervous system’s activity. By leveraging this AI-driven measurement method, we can access previously unattainable insights with HRV alone.

Measuring Sympathetic Arousal and HRV Together

By combining HRV and Sympathetic Arousal measurements, clinics gain a more comprehensive understanding of physical and emotional stressors affecting their patients. This dual approach enables earlier interventions and more personalized wellness plans, which can translate into better patient outcomes and overall mental health improvement. Key benefits include:

  • Detecting early signs of chronic stress and anxiety by identifying physiological changes that are linked to prolonged stress responses. This is key for preventing burnout and maintaining employee well-being.
  • Providing more accurate mental health assessments beyond HRV.
  • Identifying specific stress triggers for better management and coping strategies, allowing clinics to understand what stressors may lead to heightened arousal in patients and adjust treatment plans accordingly.
  • Removing guesswork from evaluating intervention efficacy by objectively measuring changes in sympathetic and parasympathetic arousal. Improvements in sympathovagal balance can ensure that treatment efforts are making an impact on health and well-being outcomes.
  • Benchmarking best practices for increased ROI by determining which wellness strategies provide the most effective reduction in stress and improving overall employee outcomes.

 

Monitoring Fatigue

Fatigue is a state of physical or mental exhaustion that results from prolonged activity, stress, or lack of rest. It can manifest as reduced energy levels, impaired concentration, and diminished physical or cognitive performance due to prolonged sympathetic dominance (Tanaka, 2015). Benefits of monitoring both HRV and Sympathetic Arousal can be helpful for fatigue in the following ways:

  • Spotting physical and mental exhaustion patterns early, allowing for proactive adjustments in workloads or daily routines.
  • Tailoring fatigue management strategies at scale to improve overall well-being by creating individualized treatment plans that consider the recovery and arousal aspects of a patient’s health.

How Sympathetic Arousal Can Be Used For Your Business

Sympathetic Arousal (SA) is more than just a stress metric—it’s a powerful tool that can transform mental health care, performance optimization, and stress management across various fields.

Healthspan & Longevity Clinics: Chronic stress accelerates aging by over-activating the sympathetic nervous system, leading to inflammation, oxidative stress, cellular damage, and increased risk of age-related diseases like cardiovascular issues and cognitive decline. Monitoring Sympathetic Arousal (SA) helps detect and manage stress early, enabling healthspan clinics to create personalized plans that slow aging, enhance recovery, and promote long-term vitality for healthier, longer lives.

Elite Athletes: Stress disrupts athletic performance by impairing recovery, increasing the risk of injury, and reducing focus and endurance due to prolonged sympathetic nervous system activation. By tracking Sympathetic Arousal (SA), excessive stress can be identified, allowing athletes and coaches to optimize recovery, balance training, and minimize the risks of burnout and injury.

First Responders & Military Personnel: Chronic stress and fatigue in first responders (e.g. Police, firefighter, EMTs) and military personnel impair decision-making, reduce endurance, and heighten the risk of injury or burnout. Prolonged exposure without recovery increases vulnerability to PTSD and other mental health issues, impacting long-term resilience. By monitoring Sympathetic Arousal (SA) in real time, stress can be managed during critical operations, improving performance and reducing the long-term risks of burnout and PTSD.

Book a meeting

Do you have a data-driven business looking to use cutting-edge AI-power wearables? 

Get in touch with us!

 

References

Shaffer, F. (2017, September 28). An Overview of Heart Rate Variability Metrics and Norms. PubMed. Retrieved October 11, 2024, from https://pubmed.ncbi.nlm.nih.gov/29034226/

Tanaka, M. (2015, September 29). Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. NCBI. Retrieved October 11, 2024, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621713/

Udhayakumar, R. (2023, August 30). Measurement of stress-induced sympathetic nervous activity using multi-wavelength PPG. Royal Soc. Open Science. Retrieved October 11, 2024, from https://doi.org/10.1098/rsos.221382

Ziegler, M. (2012). Chapter 61 – Psychological Stress and the Autonomic Nervous System,. Primer on the Autonomic Nervous System (Third Edition). Retrieved October 11, 2024, from https://doi.org/10.1016/B978-0-12-386525-0.00061-5

 

 

 

 

Reading time: 3 min

Veterans’ lives manifest an intricate interplay of emotional and physical health due to the unique nature of their service experiences. Emotional well-being, informed by the psychological toll of deployments and combat scenarios, is a vital facet of veterans’ health. Physical health, encompassing issues stemming from combat injuries, post-service fitness, and overall vitality, is equally indispensable.

The synergy between these aspects is unmistakable. Their emotional and physical health require dedicated attention, and therein lies the pivotal role of Veteran’s Affairs organizations and institutions committed to fostering the well-being of those who have served our nation.

Health monitoring on an individual basis is becoming more popular; however, such organization play a key role in adequate interpretation of that data. Here’s how biometric monitoring with Biostrap can complement the work of organizations dedicated to veterans’ health and well-being.

Biometric monitoring of veterans

Biometric monitoring emerges as a game-changing tool for veterans striving to enhance their well-being. The Biostrap Kairos and Vital Science app offer a sophisticated platform for the continuous tracking of vital parameters, including heart rate, heart rate variability (HRV), respiratory rate and sleep parameters. This technology arms veterans with comprehensive insights into their health, facilitating an informed approach to addressing both physical and emotional concerns.

Heart rate

often reflective of stress levels and cardiovascular health, serves as a fundamental indicator for veterans to manage their well-being. Monitoring heart rate empowers veterans to discern the implications of stress and anxiety, enabling timely interventions such as relaxation techniques or physical activities to mitigate stress.

Heart rate variability

A measure of autonomic nervous system function, emerges as a potent tool to gauge resilience. Higher HRV is indicative of better health and adaptability, while diminished HRV may signal stress and reduced resilience. For veterans, HRV tracking illuminates their physiological response to stressors, allowing for proactive adjustments to enhance resilience.

Sleep parameters

Vital for physical and emotional recovery, sleep quality can now become tangible through Biostrap. Many veterans encounter sleep disturbances post-service, and the ability to monitor sleep patterns, disturbances, and overall sleep quality is a critical component in maintaining optimal mental health and cognitive functioning.

Nervous system balance

Imagine being able to visualize to what extent a veteran’s nervous system is in parasympathetic or sympathetic mode and what their stress levels are at any given point in time. In addition to that you can grasp how these parameters shift in response to certain interventions or events. This is where the Biostrap Spot Check feature comes into play, offering a unique and invaluable perspective on the state of the veteran’s nervous system.

The Biostrap Spot Check goes beyond conventional biometric monitoring. It provides real-time insights into the balance of an individual’s autonomic nervous system, stress index, HRV, and heart rate. All that through a simple three-minute scan using the Kairos wrist-worn device. With this feature, veterans and their healthcare providers can gain an unprecedented understanding of their physiological response to stressors and relaxation techniques.

Organizational involvement

The importance of Veteran’s Affairs organizations and institutions committed to veterans’ health and well-being cannot be overstated. These entities serve as the custodians of veterans’ welfare, guiding them toward a healthier, more fulfilling post-service life. There are several compelling reasons why organizational participation is indispensable:

Early intervention

Organizations are uniquely positioned to detect subtle biometric trends in veterans that may herald impending health issues. Regular health check-ins create opportunities for organizations to provide timely support, averting the progression of health concerns into more severe problems.

Holistic care

The spectrum of challenges faced by veterans extends from physical injuries to intricate mental health issues. Through the comprehensive monitoring of biometrics, organizations can adopt a more holistic approach to addressing veterans’ well-being, concurrently addressing both their physical and emotional health.

Accountability and support

Organizational engagement instills a sense of accountability in veterans. It conveys an unwavering commitment to their well-being and fosters an environment where veterans are motivated to take agency of their health, buoyed by the support of institutions dedicated to their welfare.

The Biostrap solution: innovative, scalable, convenient

Biostrap offers an innovative, convenient, and scalable ecosystem for the active involvement of Veteran’s Affairs organizations and institutions committed to veterans’ health and well-being. In this intricate landscape of veterans’ health, both emotional and physical well-being are inextricably linked, and the role of organizations in monitoring biometrics serves as a beacon of support and early intervention.

Reading time: 2 min

In the pursuit of a happier, healthier life, the journey from mental health to mental fitness is a transformational shift. Mental health is about managing and addressing issues, while mental fitness represents a proactive approach to building resilience, emotional strength, and overall well-being. It’s a path that passes through self-awareness, empowerment, and personalized strategies, and it can be greatly aided by the integration of AI and wearable data.

Understanding the journey

The journey from mental health to mental fitness begins with understanding the fundamental difference between the two. Mental health often focuses on addressing challenges such as stress, anxiety, or depression when they arise. While this is essential and valuable, mental fitness takes a broader approach. It involves actively cultivating a mindset and lifestyle that promote emotional and psychological well-being, making it easier to navigate life’s challenges.

How AI and wearable data play a proactive role in mental fitness

The role of AI fueled by biometric analysis can act as a guide, helping individuals recognize their mental health challenges and encouraging self-awareness. AI can analyze vast amounts of health data collected from wearable devices, such as the Biostrap Kairos, providing insights into emotional triggers and patterns of distress. Armed with this knowledge, individuals can develop a deeper understanding of themselves and their mental well-being.

Building Self-Awareness

Self-awareness is the cornerstone of mental fitness. It’s the ability to recognize one’s emotions, thoughts, and behavioral patterns. AI-powered wearable technology can assist in building self-awareness by continuously monitoring physiological responses to emotional fluctuations. Over time, users gain a clearer picture of their triggers and reactions, empowering them to make more informed decisions.

Tracking Progress

As individuals embark on their journey toward mental fitness, it’s crucial to track progress. Wearable technology plays an important role here, offering real-time data on various aspects of well-being. The Biostrap Kairos device and the Vital Science app for example, offers a Spot Check feature that provides insight into a user’s autonomic nervous system balance. This data allows users to understand to what extent their body is in the mode of parasympathetic (rest-and-digest) or sympathetic (fight-or-flight).

Additionally, monitoring biometrics such as heart rate, sleep patterns, and activity levels, users can visualize their improvements, set achievable goals, and celebrate milestones along the way.

Cultivating mindfulness

The Vital Science app offers guided mindfulness practices as part of the Meditation Plus feature. It doesn’t only helps users incorporate a mindfulness into their lifestyle routine, but each mindfulness session can be tracked using the Biostrap Kairos.

With that, users can gain insights into how their heart rate, heart rate variability, and respiratory rate shift during meditation. These practices teach individuals to stay present, manage stress, and respond to triggers with composure. Mindfulness is a cornerstone of mental fitness.

How Biostrap can help

At Biostrap, we are committed to empowering individuals on their journey from mental health to mental fitness. Our cutting-edge digital health technology combines the precision of AI with the convenience of a wearable to provide you with the tools and insights you need to build resilience, foster emotional strength, and proactively manage your mental well-being.

Our technology continuously monitors your physiological data and offers real-time feedback. It helps you understand your triggers, manage stress, optimize your sleep, and build mindfulness practices into your daily life.

Your well-being matters, and we are here to empower you every step of the way. Start your journey today, and let’s build mental fitness together.

Reading time: 4 min

In the quest for better health and well-being, there has been a growing focus on tapping into the parasympathetic nervous system. This emphasis on relaxation, mindfulness, and stress reduction is undoubtedly valuable, but it’s crucial to recognize a fundamental truth: the autonomic nervous system (ANS) is never just in one mode. It’s in a perpetual state of flux, maintaining a continuous tug-of-war between its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS).

The misconception of pure parasympathetic dominance

In the pursuit of relaxation and stress reduction, there’s a common misconception that achieving a state of pure PNS dominance is the ultimate goal. While the PNS is indeed responsible for “rest and digest” activities, it’s essential to remember that the ANS is not an on-off switch, but rather a dial — a dynamic system that adjusts to your body’s needs in real-time.

Often referred to as the body’s autopilot, the ANS regulates countless bodily functions without us even realizing it, from heart rate and digestion to respiratory rate and pupil dilation. While it might be tempting to think of the ANS as a binary switch, with one side turning off as the other activates, the reality is far more nuanced.

Our bodies are engaged in a constant tug of war, with the SNS and PNS in a dynamic manner, adjusting their influence according to our physiological and psychological needs. In certain situations, being more dominant in one mode is more beneficial, but remember, pure dominance in either is rare. This continuous interplay between the sympathetic and parasympathetic branches is essential for our overall health and well-being.

The art of balance: when dominance matters

Imagine a lion chasing you through the savannah; your body’s SNS kicks into high gear. Your heart rate soars, your muscles tense, and your senses become razor-sharp – all to help you escape danger and survive. This is a classic example of the SNS taking charge when needed, ensuring your survival in critical moments.

Conversely, during moments of calm and relaxation, the PNS steps in. It slows your heart rate, aids in digestion, and promotes healing and regeneration. When you’re enjoying a peaceful night’s sleep, engaging in mindful meditation, or simply lounging on the couch, the PNS is the star player, ensuring your body rests, recharges, and recovers.

The modern SNS dominance epidemic

The sympathetic nervous system is designed to respond to immediate threats and challenges. However, the relentless demands of the modern world have led many individuals to remain stuck in this heightened state of arousal, even when no immediate danger is present. The result? An imbalance in the autonomic nervous system that can have profound consequences on physical and mental health.

Here’s how SNS dominance affects us:

Chronic stress

Modern life is rife with stressors, from work pressures to financial concerns and constant connectivity through technology. This chronic stress keeps the SNS in overdrive, leading to increased heart rate, shallow breathing, and elevated cortisol levels – all of which can have detrimental effects on health.

Sleep disturbances

SNS dominance often spills into nighttime hours, making it difficult to unwind and achieve restorative sleep. Sleep quality suffers as a result, leaving individuals feeling fatigued and irritable.

Digestive issues

The SNS is not conducive to proper digestion, leading to problems like indigestion, irritable bowel syndrome (IBS), and other gastrointestinal discomforts.

Mental health impact

Persistent SNS activation can contribute to anxiety disorders, depression, and an overall sense of unease.

Reduced immunity

Over time, a continually dominant SNS can weaken the immune system, making individuals more susceptible to illnesses and infections.

Quantifying the autonomic nervous system balance with Biostrap

Understanding this delicate balance within the ANS can seem complex, but wearable technology like the Biostrap Kairos makes it accessible and actionable. Biostrap provides a comprehensive view of your ANS activity, allowing you to fine-tune your lifestyle choices for better health and well-being.

Biostrap’s newest device, Kairos, matched with the Vital Science app, empowers users with real-time insight into how much that ANS dial is turned toward PNS or SNS in at any given time of the day.

nervous system

 

Kairos provides:

Real-time spot check: Kairos offers an assessment of your ANS balance, giving you a dynamic view of your body’s state at any point during the day.

Lifestyle insights: Kairos can reveal how certain lifestyle interventions, such as exercise, meditation, or dietary choices, impact your ANS balance.

Actionable guidance: With this data-driven insight, you can make informed decisions about your daily routines, optimizing your activities to achieve better ANS balance.

In a world where the focus on relaxation and parasympathetic nervous system activation is growing, Biostrap provides the tools to help you navigate the delicate balance of your autonomic nervous system. It empowers you to recognize and respond to your body’s needs, whether it’s a burst of energy for a challenging task or a deep sense of relaxation for restorative sleep. Remember, it’s not about switching a switch on and off, it’s about learning to toggle the dial back and forth of your ANS for a healthier, more optimal, and more balanced life.

Reading time: 5 min

Have you ever woken up after an eight-hour night of sleep, only to still feel tired? We all have nights where we can’t sleep, whether it’s due to insomnia, hormonal changes, exercising or eating too late, or feeling anxious and restless. Not being able to sleep from time to time is an occasional occurrence for most people, but one that doesn’t cause them much trouble.

On the other hand, there are people who are tired all the time. Being constantly sleepy isn’t normal, and it could be a symptom of a more serious condition. If you’re always sleepy no matter how much sleep you get, here’s what could be causing you trouble — and how to get back to sleeping soundly.

Why Am I Always Sleepy No Matter How Much Sleep I Get?

Everyone deserves to get a good night’s sleep and wake up the next day feeling refreshed and rejuvenated. Unfortunately, this isn’t realistic for people who feel tired all the time. It can be especially frustrating for people who experience tiredness and low energy levels on a daily basis, even when they go to bed early and try to sleep all throughout the night.

The first thing to look at is the amount of sleep you get each night. The National Sleep Foundation recommends 7-9 hours of sleep per night. Yet, if someone is physically active throughout the day or has additional medical conditions, this can vary.

Sleep problems can also be a result of over-reliance on sleep medications, including synthetic pills as well as more natural approaches like melatonin or valerian. While natural remedies may be safer and have fewer side effects, relying on any type of medication to help you sleep can mask underlying sleep problems.

It may help to invest in a sleep tracker to better understand your sleep patterns during the night. A sleep tracker, like Biostrap, can help you understand how much time you spend in deep or light sleep, how long it takes you to fall asleep, how many times you wake up during the night, whether you snore or move a lot, and more. Such sleep tracker data can provide valuable insights into how much quality sleep you’re getting, and whether or not it’s time to introduce a lifestyle change.

Sleep Disorders and Persistent Tiredness

Quality sleep is essential for optimal recovery and performance, yet many people struggle with it. Are you constantly asking yourself, “Why am I tired all the time?” If so, it might be time to explore additional causes of your tiredness that may be beyond your control. Here’s a look at sleep disorders and medical conditions that may be affecting your quality of sleep and contributing to chronic tiredness.

Sleep Apnea

Sleep apnea is one of the most common medical conditions causing chronic sleepiness. Specifically, obstructive sleep apnea “occurs when your throat muscles intermittently relax and block your airway during sleep,” according to the Mayo Clinic. Obstructive sleep apnea (OSA) cannot only be serious, but it is the most common form of sleep apnea yet it’s often left undiagnosed.

According to a study published in Science Direct, “OSA affects approximately 20% of US adults, of whom about 90% are undiagnosed.”

The two main symptoms of sleep apnea are excessive daytime sleepiness and loud snoring. Sleep apnea is also a common reason why people who maintain a consistent, healthy bedtime routine still feel tired the next day. High blood pressure, being overweight, smoking, diabetes, and narrowed airways are all symptoms of sleep apnea.

One helpful solution for sleep apnea is a treatment called Continuous Positive Airway Pressure (CPAP). This is simply a face or nasal mask that offers a consistent stream of airflow into the nasal passages, keeping the airway open. This is a non-invasive treatment and can help you improve the quality of your sleep. Meanwhile, the common medical advice for overweight people with sleep apnea is to engage in lifestyle factors that promote weight loss.

Chronic Fatigue Syndrome

When you feel like you’re never getting enough sleep even though you get the recommended 7-9 hours of sleep, it could be due to chronic fatigue syndrome (CFS). This condition causes persistent daytime sleepiness regardless of nighttime sleep patterns. It can be exacerbated by intense physical activity and intellectual stimulation. In addition to causing fatigue, it causes loss of memory, sore throat, unexplained muscle and joint pain, and frequent headaches.

While the cause of chronic fatigue syndrome is still unknown, according to the Mayo Clinic, it can be triggered by a variety of factors. These include viral infections, such as herpes and epstein-barr virus. It is also commonly associated with immune system problems and autoimmune disorders. Working with a therapist to take back control of your life and optimize your daily routines can help you address many of the CFS symptoms.

Additionally, a physical therapist can help you reduce your hypersensitivity to exercise and gradually begin helping you get active, which can stimulate blood flow, boost endorphins, and support higher energy levels.

Other Health Conditions Associated With Tiredness

The quality of your sleep is largely impacted by your circadian rhythm. Also known as your sleep-wake cycle, the circadian rhythm dictates influences when you will feel sleepy and when you will be more alert.

Circadian rhythm disorders, however, can disrupt these sleep patterns and create an inconsistent sleep cycle. People’s circadian rhythm can be disrupted by inconsistent sleep schedules, especially for those engaging in shift work and those who work late into the night.

Iron deficiencies are another common reason why people are always sleepy. In fact, feeling very tired is one of the most common symptoms of an iron deficiency. “This happens because your body needs iron to make a protein called hemoglobin, which is found in red blood cells. Hemoglobin helps carry oxygen around the body,” registered dietician Mary Jane Brown said in a Healthline interview.

Additional symptoms of iron deficiency include paleness, shortness of breath, headaches, dizziness, and heart palpitations. Iron deficiencies can be caused by poor nutrition, pregnancy, and inflammatory bowel disease. The good news is that most iron deficiencies are easy to address by increasing your iron intake and maintaining a balanced diet.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Improving Your Sleep Hygiene

Poor sleep is often a side effect of poor sleep hygiene. For example, a lot of people struggle to maintain a consistent sleep schedule, which makes it hard for their body to adjust during the day. Consuming alcohol on weeknights, exercising too late in the day, using the bedroom for work, and staying on screens while in bed are a few examples of poor sleep hygiene.

Going to bed at the same time each night and setting your alarm clock for the same time each morning can create consistency in your sleep schedule and thus improve your quality of sleep.

This can get your circadian rhythm back on track. Such consistency around sleep is also a great way to train your body when to get tired in the evenings and when to wake up feeling alert. 

Removing electronics from the bedroom and staying away from screens before bed is another way to prepare your body for sleep.

Mental Health Management

Mental health is another pillar to consider when you constantly feel tired. Anxiety and stress are two common, yet often overlooked causes of fatigue. This is in part because stress may elevate cortisol levels, which in turn can disrupt a person’s ability to achieve good sleep quality.

Studies show that reducing cortisol levels and balancing the hypothalamic-pituitary-adrenal (HPA) axis can greatly improve sleep disturbances and overall sleep quality. The HPA axis is the body’s system for regulation, helping an individual to stay safe in response to constantly changing environments. This mechanism plays an important role in activating the body’s sympathetic nervous system (flight-or-fight mode), potentially causing further stress.

Taking care of your mental health can help the HPA axis to stay in balance and regulate cortisol levels so that your sleep quality won’t suffer the consequences. Regular stress management practices such as meditation, yoga, creative expression, and physical activity have all been found to help improve sleep and overall well-being, and balance the nervous system.

So, Why Am I Always Tired?

The quality of sleep you get matters. Whether you’re falling asleep at work or waking up groggy every day, it’s important to understand why you’re always tired.

If you feel like you’re sleeping for ample time throughout the night, your tiredness may be due to a sleep disorder, such as sleep apnea. It could also be related to chronic fatigue syndrome or an iron deficiency. Seeking out professional medical advice can help you get to the bottom of your persistent tiredness, so you can get back to feeling your best and stop losing sleep over it.

Did we miss anything?

If you have any questions, suggestions or topic requests, please reach out.

Skip to content