Reading time: 3 min

The advent of digital health and research has has opened up new frontiers in healthcare delivery, diagnosis, treatment, and disease prevention. One central element that fuels this digital revolution is data. Data has become the lifeblood of digital health and research, driving insights, innovation, and improved patient outcomes. However, the potential of data can only be fully realized when there is transparency.

What is data transparency

Data transparency refers to the ability of all stakeholders to have access to and understand the data that is being used. It is about making the data freely available and clear for everyone to see, without hidden agendas or misuse. This transparency is critical to foster trust, enable collaboration, and ensure accountability in the digital health landscape.

They can see where the data comes from, how it is processed, and how it is used. This transparency empowers everyone to make informed decisions, enhances collaboration, and fosters trust.

The importance of data transparency

The value of data transparency in digital health and research cannot be overstated. It forms the foundation of trust between patients, healthcare providers, and researchers. When there is transparency, patients are more likely to share their data, knowing that it will be used responsibly and for their benefit. This trust is crucial for the success of digital health initiatives.

Data transparency also leads to better research outcomes. When researchers have access to transparent data, they can conduct more robust analyses, develop novel algorithms, make accurate predictions, and develop innovative solutions and even discover new biomarkers.

That’s why transparency is one of the core values of Biostrap in how it provides access to data that’s captured by its wearable, Kairos. This transparency enables collaboration, as researchers can share their data and findings, leading to greater scientific progress.

Moreover, data transparency can help to ensure accountability in the digital health space. It allows for the tracking and auditing of data, ensuring that it is used responsibly and ethically.

This accountability can help to prevent data breaches and misuse, protecting the privacy and rights of patients.

The missing link: data transparency in wearables

Wearables, including fitness trackers, smartwatches, and health monitors, collect a wealth of data about our bodies and lifestyles. This data can provide valuable insights into our health and well-being, enabling personalized healthcare and proactive disease prevention.

However, there is a missing link that threatens to undermine their value: data transparency. Many wearable companies operate in a black box, with little transparency about how they collect, process, and use the data.

This lack of transparency raises concerns about the privacy, security, and ethical use of the data.

That’s where Biostrap’s team wanted to bridge the gap and be a fully transparent digital health solution. At Biostrap, we believe that transparency is key to building trust and fostering collaboration in the digital health space.

Hence, we are committed to providing our enterprise clients with clear, understandable information about how the data is collected, processed, and used. It also gives them control over the data, allowing them to decide who can access it and for what purpose.

It can also enable collaboration among researchers, leading to better research outcomes. Especially so because Biostrap also collaborates with researchers, sharing anonymized data to support health research.

Challenges to data transparency in digital health and research

While the benefits of data transparency are clear, there are several challenges to achieving it in digital health and research. These challenges include privacy concerns, data security risks, and the complexity of health data.

Privacy is a major concern in the digital health space. Many individuals are wary of sharing their health data, fearing that it could be misused or fall into the wrong hands. To address this concern, there is a need for strong privacy protections and clear communication about how the data will be used.

Data security is another significant challenge. With the increasing volume of health data being collected, the risk of data breaches and cyberattacks is high. This risk can be mitigated through robust data security measures and regular audits.

To address these challenges, Biostrap has implemented high-quality data protection measures, built a secure ecosystem that’s fully HIPAA-compliant, and ensures that user and patient data is safe and can never be accessed by a third party.

Reach out to our team to discuss how Biostrap can help get your research project off the ground, or how we can help best implement a successful remote health monitoring program in your practice.

Click on the “Partner with us” button at the top of THIS page to book a meeting with a team member.

Reading time: 4 min

In the quest for better health and well-being, there has been a growing focus on tapping into the parasympathetic nervous system. This emphasis on relaxation, mindfulness, and stress reduction is undoubtedly valuable, but it’s crucial to recognize a fundamental truth: the autonomic nervous system (ANS) is never just in one mode. It’s in a perpetual state of flux, maintaining a continuous tug-of-war between its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS).

The misconception of pure parasympathetic dominance

In the pursuit of relaxation and stress reduction, there’s a common misconception that achieving a state of pure PNS dominance is the ultimate goal. While the PNS is indeed responsible for “rest and digest” activities, it’s essential to remember that the ANS is not an on-off switch, but rather a dial — a dynamic system that adjusts to your body’s needs in real-time.

Often referred to as the body’s autopilot, the ANS regulates countless bodily functions without us even realizing it, from heart rate and digestion to respiratory rate and pupil dilation. While it might be tempting to think of the ANS as a binary switch, with one side turning off as the other activates, the reality is far more nuanced.

Our bodies are engaged in a constant tug of war, with the SNS and PNS in a dynamic manner, adjusting their influence according to our physiological and psychological needs. In certain situations, being more dominant in one mode is more beneficial, but remember, pure dominance in either is rare. This continuous interplay between the sympathetic and parasympathetic branches is essential for our overall health and well-being.

The art of balance: when dominance matters

Imagine a lion chasing you through the savannah; your body’s SNS kicks into high gear. Your heart rate soars, your muscles tense, and your senses become razor-sharp – all to help you escape danger and survive. This is a classic example of the SNS taking charge when needed, ensuring your survival in critical moments.

Conversely, during moments of calm and relaxation, the PNS steps in. It slows your heart rate, aids in digestion, and promotes healing and regeneration. When you’re enjoying a peaceful night’s sleep, engaging in mindful meditation, or simply lounging on the couch, the PNS is the star player, ensuring your body rests, recharges, and recovers.

The modern SNS dominance epidemic

The sympathetic nervous system is designed to respond to immediate threats and challenges. However, the relentless demands of the modern world have led many individuals to remain stuck in this heightened state of arousal, even when no immediate danger is present. The result? An imbalance in the autonomic nervous system that can have profound consequences on physical and mental health.

Here’s how SNS dominance affects us:

Chronic stress

Modern life is rife with stressors, from work pressures to financial concerns and constant connectivity through technology. This chronic stress keeps the SNS in overdrive, leading to increased heart rate, shallow breathing, and elevated cortisol levels – all of which can have detrimental effects on health.

Sleep disturbances

SNS dominance often spills into nighttime hours, making it difficult to unwind and achieve restorative sleep. Sleep quality suffers as a result, leaving individuals feeling fatigued and irritable.

Digestive issues

The SNS is not conducive to proper digestion, leading to problems like indigestion, irritable bowel syndrome (IBS), and other gastrointestinal discomforts.

Mental health impact

Persistent SNS activation can contribute to anxiety disorders, depression, and an overall sense of unease.

Reduced immunity

Over time, a continually dominant SNS can weaken the immune system, making individuals more susceptible to illnesses and infections.

Quantifying the autonomic nervous system balance with Biostrap

Understanding this delicate balance within the ANS can seem complex, but wearable technology like the Biostrap Kairos makes it accessible and actionable. Biostrap provides a comprehensive view of your ANS activity, allowing you to fine-tune your lifestyle choices for better health and well-being.

Biostrap’s newest device, Kairos, matched with the Vital Science app, empowers users with real-time insight into how much that ANS dial is turned toward PNS or SNS in at any given time of the day.

nervous system

 

Kairos provides:

Real-time spot check: Kairos offers an assessment of your ANS balance, giving you a dynamic view of your body’s state at any point during the day.

Lifestyle insights: Kairos can reveal how certain lifestyle interventions, such as exercise, meditation, or dietary choices, impact your ANS balance.

Actionable guidance: With this data-driven insight, you can make informed decisions about your daily routines, optimizing your activities to achieve better ANS balance.

In a world where the focus on relaxation and parasympathetic nervous system activation is growing, Biostrap provides the tools to help you navigate the delicate balance of your autonomic nervous system. It empowers you to recognize and respond to your body’s needs, whether it’s a burst of energy for a challenging task or a deep sense of relaxation for restorative sleep. Remember, it’s not about switching a switch on and off, it’s about learning to toggle the dial back and forth of your ANS for a healthier, more optimal, and more balanced life.

Reading time: 3 min

 

In today’s fast-paced world, stress has become a pervasive problem that affects our physical and mental well-being. Chronic stress can have detrimental effects on our health, leading to various disorders and increasing the risk of cardiovascular problems and mental health issues. For effective stress monitoring and management, it is crucial to accurately measure its impact on our bodies.

Traditional methods of stress assessment, such as physical tests and questionnaires, have limitations in terms of subjectivity and accuracy.

However, advancements in wearable biosensors have paved the way for real-time, continuous monitoring of stress biomarkers, providing valuable insights for clinical diagnoses and personal stress management.

Unraveling the complexities of stress: a holistic approach

Stress, as an intricate and multifaceted physiological response to external demands, triggers the orchestrated release of cortisol, adrenaline, and noradrenaline – molecular protagonists underpinning the “fight-or-flight” reaction.

However, prolonged exposure to stress ushers in a cascade of physiological changes, resulting in disruptions to the harmonious equilibrium orchestrated by the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic adrenal medullary (SAM) axis. These disruptions contribute substantively to the pathogenesis of anxiety, depression, and cardiovascular morbidity.

Beyond traditional metrics: the futility of conventional stress assessment

Traditionally, stress has been measured through physical tests and questionnaires. The Trier Social Stress Test (TSST) is a commonly used test that assesses acute stress levels by subjecting individuals to public speaking and arithmetic tasks. Saliva, blood, psychophysiological, and cognitive measures are then analyzed to evaluate stress levels.

While these tests provide valuable information, they are not without limitations. Variability in test conditions and the subjective nature of self-reporting can impact the reliability and reproducibility of results.

Another widely used method is the Perceived Stress Scale (PSS), a survey that assesses an individual’s overall stress levels based on their perceived life experiences. Similarly, the Kessler Psychological Distress Scale (K10) measures mental distress levels. These tools provide insights into an individual’s subjective experience of stress but do not offer objective measures of physiological responses.

Wearable biosensors: a panacea for stress monitoring

Recent advancements in stress monitoring focus on the quantification of stress biomarkers, which are molecules or biometrics, or physiological indicators, that provide insight into an individual’s nervous system state. Biomarkers can be detected in various bodily fluids, such as blood, saliva, urine, and sweat. Sweat biomarkers, in particular, have gained attention due to the non-invasiveness and ease of collection.

Sweat contains a wide range of metabolites, electrolytes, and minerals that can serve as indicators of stress levels. Cortisol, a glucocorticoid hormone, is considered the gold standard for evaluating the activity of the HPA axis. Other stress biomarkers include epinephrine, norepinephrine, alpha-amylase, and interleukin-6. Electrochemical and colorimetric transduction methods have been developed to detect and quantify these biomarkers in sweat.

Additionally, the Biostrap Kairos, introduces a novel way to assessing autonomic nervous system balance including sympathetic and parasympathetic branch quantifications. Utilizing raw PPG, Kairos captures relevant biometrics including beat-to-beat heart rate data, heart rate variability (HRV) and respiratory rate to allow for in-depth objective data analysis.

Such real-time, seamless, and unobtrusive collection of stress data is highly valuable for simultaneously prioritizing user comfort and feasibility during diverse physiological parameters.

Challenges of sweat measurements

While sweat analysis have shown great potential in stress monitoring, there are still challenges to overcome. The correlation between sweat analyte (or chemical undergoing analysis) concentrations and blood concentrations is complex, and factors such as sweat rate and analyte distribution can affect the accuracy of measurements. Extracting interstitial fluid (ISF) analytes in a non-invasive manner also presents challenges, as extraction efficiency and skin surface contamination can impact accuracy.

Further research is needed to validate the clinical utility of sweat as a diagnostic biofluid for stress monitoring. Improvements in sampling methods and analyte monitoring techniques are necessary to enhance the reliability and accuracy of wearable stress sensors. Integration of multiple sensing arrays and the development of multiplexed wearable sensing platforms hold promise for comprehensive stress assessment.

Innovations toward a new trajectory

Advancements in wearable biosensors have revolutionized the field of stress monitoring. These devices provide real-time, continuous data on stress biomarkers, allowing for personalized stress management and clinical diagnoses. While sweat sensors offer a non-invasive and convenient method for stress assessment, there are challenges that are yet to be overcome.

By harnessing the power of wearable biosensors, like Biostrap Kairos, we can gain valuable insights into our stress levels in real time and any given time of the day and take proactive steps to improve the state of our nervous system.

Reading time: 3 min

Oxygen is one of the essential building blocks of life. Without oxygen, the human body can’t function. Oxygen saturation levels are a way of measuring how much oxygen is in the bloodstream. While most healthy individuals don’t need to monitor their oxygen saturation level, people with certain health conditions or athletes looking for peak performance can benefit from tracking oxygen levels.

Here, we’ll explore everything you need to know about your oxygen saturation level.

What Is Oxygen Saturation?

An oxygen saturation level is the measurement for the amount of oxygen in your bloodstream. All organs in the human body need oxygen to function. Oxygen saturation refers to the percentage of hemoglobin that is bound to oxygen when in the artery. Hemoglobin is the protein in red blood cells that binds oxygen, carbon dioxide, and carbon monoxide. 

Since arterial blood is on the way to the capillaries from the left ventricle of the heart, a high amount of oxygen is expected on hemoglobin, typically greater than 95% saturation. This oxygen is what is required for metabolic processes, namely ATP production, which provides the energy necessary for vital functioning of organs. Reduction in oxygen carrying capacity often results in altered or diminished function, which can lead to acute or chronic disorders.

What Is a Normal Oxygen Saturation Level?

Oxygen saturation greater than 95% is considered normal. Values between 90-95% represent a slightly blunted capacity to carry oxygen, and may or may not be indicative of a meaningful deviation from normal. 

However, oxygen saturation below 90% (hypoxemia) is considered low and usually suggests an abnormality in oxygen handling. Oxygen saturation levels are affected by a variety of agents including the amount of oxygen in the air around you, certain respiratory diseases, and nutrient deficiencies. 

How Is Oxygen Saturation Measured?

Oxygen saturation is measured using a pulse oximeter, commonly called a pulse ox. Readings from this type of test are measured as SpO2. You may not recognize the name, but you’re probably familiar with these devices. A pulse oximeter is the tool that doctors and nurses place on your finger, typically when they’re also checking your blood pressure. 

These devices use photoplethysmography (PPG). PPG utilizes red and infrared light exposure through the skin, which absorbs much of the light. Each form of hemoglobin (unbound or bound to oxygen, carbon dioxide, carbon monoxide) absorbs wavelengths of light differently.

Oxygenated hemoglobin absorbs more infrared light, whereas de-oxygenated hemoglobin absorbs more red light. This helps us determine the amount of oxygenated hemoglobin relative to total hemoglobin which is expressed as a percentage. 

You can attach the pulse oximeter to fingertips, ear lobes, or toes to get a reading. The test has a margin of error of 2%, meaning it’s less accurate than the arterial blood gases (ABG) test, which is a blood test that measures the acidity, or pH, and the levels of oxygen and carbon dioxide from an artery. Dark nail polish colors and temperature can affect the pulse ox readings. Though it’s not as accurate as the ABG test, it is a non-invasive way to get a quick SpO2 reading.

The devices are affordable and can be purchased for use at home if you’re trying to monitor your blood oxygen saturation levels regularly. The Biostrap Recover Set features a wrist-worn device that utilizes PPG to measure various biometrics, including SpO2, with clinical reliability making it easy to track your oxygen saturation levels while you sleep.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Stay on Top of Your Health

Low oxygen saturation levels can be a sign of an underlying health condition. The problem may be caused by a chronic condition or by environmental factors including smoking and pollution. The best way to manage your health is to monitor it regularly. 

Biostrap provides all the tools necessary to accurately monitor your oxygen saturation levels right on your phone. While the wrist-worn device captures your SpO2, among other vital biometrics, with the use of advanced machine learning algorithms, the app offers easy-to-understand and actionable insights into weekly, monthly, and yearly trends. Additionally, you can monitor every single point of data collection that occurred throughout the night, which can help you determine potential dips in your SpO2 levels. These may even call for medical consultation with regards to a sleep disturbance such as sleep apnea events.

Did we miss anything?

If you have any questions, suggestions or topic requests, please reach out.

Skip to content