Reading time: 3 min

First responders play a crucial role in safeguarding our communities, often facing high-stress situations that can take a toll on their mental and physical well-being. Wearable technology has provided great value in various industries for tracking health metrics, such as heart rate, sleep patterns, and physical activity. Its potential in supporting first responders is undeniable in terms of helping to enhance safety and performance, including the benefits of tracking fatigue, sleep, and recovery.

One metric that has received considerable attention in the context of first responders is heart rate variability (HRV).

What is heart rate variability (HRV)

HRV, the variation in time intervals between consecutive heartbeats. It is a measure of the balance between the sympathetic (fight or flight) and parasympathetic (rest and digest) branches of the autonomic nervous system and has proven to be a reliable indicator of an individual’s stress levels, emotional well-being, and overall health.

Utilizing wearables, such as the Biostrap devices, equipped with HRV monitoring capabilities can provide real-time data, helping first responders understand their physiological responses during high-stress situations.

Wearable Technology for Measuring HRV

Wearable technology, such as the Biostrap Kairos, EVO, and Ethos can continuously measure HRV throughout the day and night. These devices use either ECG or photoplethysmography (PPG) technology. The latter to measure the changes in blood volume in the microvascular bed of tissue, providing a non-invasive method for HRV assessment.

Advantages of Wearable HRV Monitoring

Measuring HRV offers several advantages for first responders:

  • Continuous, real-time monitoring provides a comprehensive picture of an individual’s HRV throughout the day, allowing for more accurate assessments of stress and fatigue levels.
  • Non-invasive and unobtrusive technology enables first responders to wear the devices during their daily activities and while asleep without hindrance.
  • Data collected from wearable devices can be easily accessed and analyzed, allowing for personalized recommendations and interventions.

Why HRV Matters for First Responders

By monitoring HRV, first responders can gain insights into their autonomic nervous system’s functioning, enabling them to identify early signs of stress and take appropriate action. This information empowers them to implement self-regulation techniques, such as deep breathing exercises and mindfulness, to manage stress and maintain their performance under pressure.

The impact fatigue

Fatigue is a significant challenge first responders face. Numerous studies have established a link between the demanding nature of their work and increased risk of this condition. Literally has shown that over 50 percent of firefighter deaths are due to stress and exhaustion.

Additionally, studies have established that chronic fatigue might reduce HRV. By harnessing the power of wearable technology, we can gather valuable insights into their physiological responses, enabling proactive measures to mitigate the risk and impact fatigue.

Sleep tracking

Fatigue resulting from inadequate sleep is a significant concern for first responders, as it can impair cognitive abilities, decision-making, and reaction times, jeopardizing both their safety and the safety of those they serve. Wearable technology with sleep tracking capabilities allows first responders to monitor their sleep patterns and ensure they are getting the rest they need.

Sleep tracking can provide valuable data on sleep quality, duration, and disruptions, helping first responders identify potential sleep disorders or patterns that may impact their performance

Armed with this knowledge, they can implement strategies to improve sleep hygiene, such as maintaining a consistent sleep schedule, creating a conducive sleep environment, and adopting relaxation techniques before bedtime. These measures can significantly enhance their alertness and cognitive functioning, reducing the risk of fatigue-related challenges on duty.

Optimizing performance and safety

By leveraging HRV and sleep tracking, Biostrap enables first responders to take proactive steps toward optimizing their performance and safety. Continuous monitoring of HRV can aid in identifying patterns that may indicate the need for extended rest or recovery periods, preventing burnout and promoting overall well-being. Additionally, sleep tracking empowers first responders to prioritize and improve their sleep, ensuring they are well-rested and mentally sharp during critical moments.

Furthermore, the data collected through wearable technology can be analyzed on a broader scale to identify trends across teams. This information can be used to develop evidence-based protocols and training programs aimed at promoting resilience, reducing stress-related incidents, and improving overall performance.

More research needed but we’re at a good start

More research is needed to better understand the relationship between HRV and job-specific stressors faced by first responders, as well as to develop targeted interventions and strategies based on HRV data.

However, wearable technology, like the Biostrap devices, that are equipped with HRV and sleep tracking capabilities hold tremendous potential in supporting our first responders. By providing valuable insights into their physiological responses, these devices offer an opportunity to manage stress, reduce the risk of fatigue, and optimize performance and safety.

As we continue to explore innovative solutions, it is essential to prioritize the well-being of our first responders and equip them with the tools they need to excel in their noble service to society.

Reading time: 4 min

Have you ever woken up feeling foggy, low energy, maybe even achy and craving all the sugars in the world? You likely didn’t get enough deep sleep. Slow-wave deep sleep, also known as stage 3 non-REM (NREM) sleep, is an important stage of sleep that is characterized by slow brain waves, reduced heart rate, blood pressure, and breathing rate, and relaxed muscles. This stage of sleep is essential for both physical and mental health, and getting enough of it is crucial for your recovery and overall well-being. 

The amount of deep sleep you may get each night varies depending on factors such as the time of your last coffee, meal or workout, or even your stress levels. While you will go through several cycles of sleep during the night, it’s been found that you will spend more time in deep sleep during the first half of your sleep session. Then with each sleep cycle, deep sleep decreases. It’s exactly opposite to rapid eye movement (REM) sleep. You’ll spend less time in REM in the first half and more time closer to waking up.

In our blog about why tracking your sleep matters, we break down the different stages of sleep, so we highly recommend you to take a look for some additional details.

How do you know when to go to sleep?

There are two main systems that regulate your sleep: circadian rhythm and sleep homeostasis. You have heard us talk about circadian rhythm before, as it’s the environmental cues that control your sleep-wake cycle. As such, the sunrise triggers your body to release cortisol that helps you be alert, while sunsets and darkness impact melatonin release to help you sleep.

While the circadian rhythm, the body’s 24-hour internal clock, is impacted by external cues, sleep homeostasis is an internal regulatory mechanism, also known as sleep drive. It’s similar to your body telling you that you’re hungry and you should eat. The longer you stay awake the stronger the drive gets to make you sleepy.

The more consistent you are with your sleep schedule, the better quality sleep you’ll get each night as both your circadian rhythm and your sleep homeostasis will be in balance. The longer you adhere to that schedule and maintain that balance, the easier it will be for your body to develop a healthy sleep architecture with adequate time spent in all necessary sleep stages.

When will you get the most deep sleep

With a consistent sleep-wake cycle, your body will prepare itself to tap into deep sleep the first half of when you’re used to going to bed. Generally, going to bed before midnight and around 10 p.m. is most beneficial for getting the right amount of deep sleep.

However, if you are used to going to bed around 10 p.m. each night, but stay up on the weekend past midnight, you are stripping your body of most of this restorative phase of sleep. According to the Sleep Foundation, a few signs that you’re not getting enough deep sleep are:

  • Feeling drowsy and not refreshed;
  • Lack of alertness and attention;
  • Having a hard time learning and forming new memories;
  • Cravings for high-calorie food mostly sugars and simple carbohydrates.

Why it’s important to get enough slow-wave deep sleep

The physiological adaptations that occur during slow-wave deep sleep (SWS) help you to wake up refreshed, energized, and clear-headed, so you can perform your best that day. Take a look at below how SWS impacts your physical and mental health as well as mood and metabolism.

Physical Recovery

During SWS, the body undergoes a process of physical restoration and repair. This includes the release of growth hormones that stimulate the repair and regeneration of tissues, as well as the rebuilding of bone and muscle. It is also important for the immune system, as it promotes the production of cytokines – proteins that help the body fight infections, inflammation, and stress.

In addition, SWS helps the body conserve energy and replenish glycogen stores – the primary fuel source for muscles during physical activity. This is important for athletes and anyone who engages in regular physical activity.

Mental Recovery

During this stage of sleep, the brain organizes and processes the information that has been acquired during the day. This includes the consolidation of memories, the formation of new neural connections, and the pruning of unnecessary ones.

It’s been found that the glymphatic system that helps control the flow of cerebrospinal fluid, flushes out toxic molecules from the brain during SWS. These include beta-amyloids that are one of the main causes of cognitive disorders such as Alzheimer’s Disease and other dementias.

Studies have shown that SWS is particularly important for memory consolidation and learning. During this stage of sleep, the brain replays the neural activity that occurred during the day, which strengthens the connections between neurons and helps to consolidate memories.

Mood Regulation

Sleep plays a vital role in mood regulation, and SWS is no exception. Research has shown that sleep deprivation can lead to irritability, mood swings, and even depression. This is because SWS helps to regulate emotions, and the lack of it can disrupt the balance of neurotransmitters, such as GABA, dopamine, and serotonin that are responsible for mood regulation.

Energy Restoration

Finally, SWS is important for energy restoration. During this stage of sleep, the body conserves energy and replenishes glycogen stores. Additionally, it’s when the body rebalances your blood sugar levels. Studies have found that a lack of deep sleep may increase glucose levels and decrease insulin sensitivity. 

Overall, slow-wave deep sleep is critical for physical and mental health. Getting enough of it is essential for our overall well-being, and a lack of it can lead to a range of health problems, including immune dysfunction, cognitive impairment, mood disorders, and even chronic diseases like obesity and diabetes. 

As most of it occurs during the first couple of hours of your nightly slumber, make sure to stay consistent with when you go to bed and aim for shutting the lights off before midnight.

The best way to keep an eye on how much deep sleep you get each night is to track your sleep. The Biostrap Recover Set provides you with all the tools you need to gain valuable insights on your sleep quality and how much time you spend in each sleep stage. Additionally, utilizing AI and machine learning, our Sleep Lab feature will recommend the best bedtime and wake-up time for you to help you to recover optimally each day.

Reading time: 3 min

Are you tired of feeling groggy and unproductive during the day? The key to unlocking your full potential may lie in something as simple as improving your sleep hygiene. Not only can good sleep habits lead to more restful and restorative sleep, but they can also have a positive impact on your heart rate variability (HRV). In this article, we’ll dive into the ways that good sleep hygiene can improve HRV and what you can do to get started on the path to better sleep and overall wellness. So, let’s get ready to catch some Z’s and improve your health!

What is HRV

Heart rate variability (HRV) is a measure of the variation in the time intervals between successive heartbeats. It is a marker of the functioning of the autonomic nervous system, which regulates many of the body’s internal processes, including heart rate, breathing rate, and blood pressure. Additionally, it is a non-invasive tool used to assess the balance between the sympathetic and parasympathetic nervous systems.

While it’s a validated reflection of the state of the autonomic nervous system, it is very easily influenced by both internal, external, and environmental factors. Nearly anything you do, think or are exposed to will trigger a shift in your HRV. For example, breathwork and deep breathing has been found to have positive effects on HRV, and so does spending time out in nature or socializing with friends. On the other hand, chronic stress and anxiety may have a negative impact.

Understanding your HRV levels can be a very powerful tool to have insight into how resilient your body is and how recovered you are on any given day. Additionally, HRV has been found to be an important aspect of cardiovascular health and has been associated with morbidity and mortality in multiple disease states, including cardiovascular disease, diabetes, and hypertension.

There are a myriad of practices that are beneficial to your HRV and incorporating healthy sleep habits is one of them. So let’s take a look at how and what are some good examples.

What is good sleep hygiene

Getting a good night’s sleep is essential for our physical, emotional, and mental health. Unfortunately, many of us neglect the importance of sleep and sacrifice our rest for other priorities such as work, socializing or watching TV. However, a lack of sleep and irregular sleep patterns can have serious consequences, ranging from daytime fatigue to an increased risk of chronic health conditions such as obesity, diabetes, and heart disease.

Good sleep hygiene refers to a set of habits and practices that can help us get the restorative sleep our bodies need. By following good sleep hygiene practices, we can improve our sleep quality and duration, allowing our bodies to recharge and tap into essential restorative mechanisms overnight. In turn, this can lead to a range of health benefits, including improved immune function, better mood and mental health, and increased productivity and cognitive performance.

Several studies have shown that good sleep hygiene can have a positive impact on HRV. For example:

Consistent sleep schedule

Maintaining a consistent sleep schedule helps regulate the body’s internal clock also known as circadian rhythm, which can improve HRV. A study published in the Journal of Scientific Reports found that college students who went to bed and woke up at the same time every day had better academic performance than those with irregular sleep schedules. 

Create a relaxing sleep environment

Creating a relaxing sleep environment can help reduce stress and anxiety, which can improve HRV. For example, using a white noise machine or listening to calming music before bed can promote relaxation and help your body activate its parasympathetic nervous system and improve your HRV.

Avoid caffeine and alcohol

Caffeine and alcohol can interfere with sleep and disrupt HRV. A study published in the Journal of Clinical Sleep Medicine found that caffeine consumption was associated with a significant increase in sleep disturbance.

Avoid screens and stimulating activities

 

Screens emit blue light, which can interfere with the body’s production of the sleep hormone melatonin and disrupt sleep. Engaging in stimulating activities, such as watching an exciting movie or playing a video game, before bed can also interfere with sleep and HRV.

Overall, good sleep hygiene is an important factor in promoting healthy sleep and improving HRV. By following good sleep habits and creating a relaxing sleep environment, you can improve the quality of your sleep and support the health of your autonomic nervous system.

Incorporating a wearable such as the Biostrap into your routine takes your health monitoring to the next level. By doing so, you will gain access to a wealth of objective and clinically accurate data on a wide range of metrics such as sleep quality, HRV, resting heart rate, and oxygen saturation levels, allowing you to make informed decisions about your overall health and wellbeing.

Reading time: 2 min

Sleep deprivation is a multi-factorial health issue that may trigger a cascade of serious medical conditions. More on this in a little bit, but nonetheless, it has a significant impact on the body, including the autonomic nervous system (ANS) that regulates many of the automatic processes — heart rate and blood pressure. The connection between sleep deprivation and HRV is relevant in connection to the activity of the ANS, as HRV has been found to be a reliable indicator of ANS function and overall health.

HRV and the autonomic nervous system

Studies have shown that sleep deprivation can cause a reduction in HRV, particularly in the high-frequency range, which is primarily influenced by the parasympathetic nervous system. The parasympathetic nervous system, or PNS, is responsible for calming the body, reducing stress, and maintaining balance and homeostasis. It is particularly active during times of rest and sleep.

When you are asleep, there is a shift in ANS activity from sympathetic dominance (fight-or-flight response) to parasympathetic dominance (rest-and-digest response), which helps the body relax and prepare for restorative sleep. However, when you are sleep deprived, this natural shift in ANS activity is disrupted, leading to reduced HRV.

When it comes to dissecting HRV, we look at high-frequency and low-frequency HRV which each have their own relationship with the autonomic nervous system.

Sleep deprivation and low/high-frequency HRV

The reduction in high-frequency HRV during sleep deprivation is thought to be due to an increase in sympathetic nervous system activity, which is responsible for the body’s fight-or-flight response. This increased sympathetic activity during sleep deprivation can lead to a state of hyperarousal, making it difficult to fall asleep and stay asleep, perpetuating the cycle of sleep deprivation.

Additionally, sleep deprivation has been associated with an increase in low-frequency HRV, which is influenced by both the sympathetic and parasympathetic nervous systems. This increase in low-frequency HRV may reflect an increase in sympathetic nervous system activity when you’re sleep deprived, which can lead to increased stress and anxiety, and negatively impact your overall health.

Reduced HRV is associated with an increased risk of cardiovascular disease, metabolic disorders (i.e obesity), and poor mental health outcomes, including depression and anxiety. Chronic sleep deprivation has been linked to an increased risk of these health conditions, highlighting the importance of getting enough quality sleep.

In conclusion, sleep deprivation can significantly impact HRV, leading to a reduction in high-frequency HRV and an increase in low-frequency HRV, which can negatively affect overall health and well-being. Therefore, it is essential to prioritize healthy sleep habits to maintain optimal HRV and overall health.

Whether you want to monitor your own health or you’re working with patients, measuring HRV nocturnally may serve as an essential tool to help to quantify how certain levels of sleep deprivation may affect HRV and overall recovery.

Reading time: 2 min

Research has shown that HRV is a reliable and non-invasive marker of sleep quality and duration. HRV, or heart rate variability, measures the variation in the time intervals between consecutive heartbeats, which reflects the activity of the Autonomic Nervous System (ANS) during sleep. The ANS regulates many of the body’s automatic processes, including heart rate, respiration, and digestion, and is responsible for maintaining the body’s internal balance or homeostasis.

During sleep, the ANS shifts from sympathetic dominance (fight-or-flight response) to parasympathetic dominance (rest-and-digest response), which helps the body to relax and prepare for a restful and restorative sleep. The parasympathetic nervous system (PNS) is responsible for slowing down the heart rate, lowering blood pressure and reducing the overall sympathetic activity. This shift in ANS activity is reflected in your HRV, with higher HRV indicating greater PNS activity and better sleep quality.

Additionally, when your body taps into this rest-and-digest state, stress hormones, such as cortisol and adrenaline decrease and calming hormones including oxytocin increase.

HRV and sleep

Studies have shown that higher HRV during sleep is associated with deeper and more restorative sleep, longer sleep duration, and less sleep disturbances. In contrast, lower HRV during sleep has been linked to poorer sleep quality, more frequent awakenings during the night, and an increased risk of sleep disorders, such as sleep apnea and insomnia.

HRV and sleep interventions

HRV can also be used to evaluate the effectiveness of sleep interventions. For example, cognitive-behavioral therapy for insomnia (CBT-I) has been shown to increase HRV during sleep, indicating improved sleep quality and duration. However, according to one study, more research is needed to define “whether insomnia treatment might play a role in physiological changes associated with cardiovascular anomalies.”

Similarly, relaxation techniques such as deep breathing and meditation have been found to increase HRV during sleep, suggesting that they may be effective interventions for improving sleep quality.

In summary, HRV is a useful tool for assessing sleep quality and duration, and can provide valuable insights into the activity of the ANS during sleep. By monitoring HRV during sleep, you can identify potential sleep disturbances and take steps to improve your sleep hygiene and overall sleep quality. Additionally, healthcare professionals can use HRV to diagnose and treat sleep disorders, and to evaluate the effectiveness of sleep interventions.

Reading time: 2 min

Summary algorithms are metrics designed to aggregate and simplify multiple physiological and behavioral measurements into three easy-to-interpret outcomes. These scores are presented on a 0 to 100 scale, where 100 is the ‘best’ attainable score. By presenting data in a reader-friendly format, less experience and time is required to interpret each individual’s status and progress over time, which helps both the end-user as well as any care-takers or data monitors.

Below are the descriptions of each of three main summary scores presented by Biostrap: Activity, Recovery, and Sleep Scores.

Activity Score

Physical activity is a metric that is correlated with numerous health outcomes and diseases. Activity is not exclusive to exercise bouts, and sedentary behavior has also been shown to be associated with health outcomes.

Therefore, Biostrap calculates activity score using the activity distribution over the course of a 24-hour window, emphasizing consistent physical activity of 500 steps per hour during 12 unique hours. Additionally, energy expenditure relative to the user’s goal contributes to the activity score. The energy expenditure goal, or workout calories, can be modified in the Settings tab on the user application.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Recovery Score

The recovery score is computed based on sleep data, with weighted inputs including relative resting heart rate and heart rate variability values. The Biostrap Recovery Score assesses a user’s daily value compared to a personal 5 to 30-day baseline to better understand an individual’s physiological recovery and readiness to perform.

Measures of various sleep parameters, such sleep duration, sleep latency, and the number of sleep disruptions also contribute to the overall Recovery Score calculation.

Sleep Score

The Biostrap Sleep Score includes a comprehensive analysis of over a dozen sleep parameters, including but not limited to nocturnal biometrics, sleep duration, sleep quality, awakenings, and movement.

The Sleep Score incorporates a global and individualized penalty system for calculating the score; for example, if an individual has oxygen saturation values below 90%, the algorithm will apply a global penalty. However, if an individual has an oxygen saturation within the normal range but just slightly below the trailing average over the last 30 days, they will receive a minor ‘relative’ penalty.

Ready to start tracking your Sleep and Recovery? Join our Biostrap family and get started with our Recover Set.

Reading time: 2 min

What is it

Sleep latency is the term given to describe how long it takes to fall asleep. Sleep latency can vary greatly due to behaviors before bedtime, such as alcohol, medications, exercise, diet, and blue light exposure, among others.

However, tracking sleep latency can provide additional insight to help reflect on health, behavior, and intervention changes.

How is it measured

Sleep latency is measured in minutes from the time an individual attempts to fall asleep to the time when the individual enters the first stage of sleep.

Tracking changes in physiological metrics through photoplethysmography (PPG) and accelerometry provides improved insight as individuals may have difficulty reporting the time of initial sleep onset. By tracking metrics such as heart rate, heart rate variability, respiration rate, and limb movements, a good understanding of bedtime and onset of sleep can be made.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Correlations to health conditions

It is important to note that directionality and magnitude of latency may or may not have clinical relevance based on an individual’s situation. For example, long sleep latencies can be indicative of disorders, particularly related to stress or insomnia. However, shortening sleep latency may not reflect positive changes, as high amounts of sleep debt decrease sleep latency. Further, substances such as alcohol may reduce sleep latency but may lead to lesser quality of sleep.

Many of the correlations between latency and health are drawn in anxiety and depression. These psychological disorders are relatively common and affect sleep and sleep latency. However, sleep latency is associated with decreased total sleep, where less sleep causes more anxiety and depression.

Thus, it can be essential to monitor sleep latency changes to catch trends before they become problematic.

Normal or acceptable ranges

The National Sleep Foundation acknowledges up to 30 minutes of sleep latency, regardless of age, as appropriate. Sleep latency of 31-45 minutes is listed as ‘uncertain,’ which could be due to individual trends. It stands to reason that very short sleep latency (<5 minutes) could indicate problems with fatigue and sleep deprivation; however, more research is needed on normative values in this range.

Interpreting trends

Although the clinical recommendations remain unclear, tracking sleep latency could benefit most individuals. This metric, inversely associated with total sleep duration, could provide insight into behavioral changes and how they affect sleep architecture.

Should sleep latency trend negatively for an individual, behavioral interventions could be suggested to correct sleep latency and potentially increase total sleep duration.

Reading time: 2 min

What is it

Snoring is characterized by partial obstruction of airways that results in noise while breathing. While snoring is a fairly common occurrence, it has the potential to affect sleep quality and physiological parameters, while some snoring can be benign. In addition, snoring can be disruptive to other individuals’ sleep if present in the same room, and is a fairly common stressor for families and partnerships.

How it is measured

Snoring is most often measured by microphone recording during sleep. Biostrap uses the microphone in the individual’s phone, placed near their bed during sleep, which can detect snoring patterns throughout the night. This allows measurement of frequency and intensity of snoring that is otherwise difficult to quantify without a sleep study. 

Biostrap reports snoring level severity as: none, mild, moderate or severe

Correlation with health conditions

Snoring itself can wake up both the individual and others present during sleep, which can affect sleep quality and duration, leading to increased fatigue. However, more importantly, snoring can be associated with obstructive sleep apnea. Obstructive sleep apnea is when airways are obstructed enough to restrict airflow. In typical sleep apnea, airflow is restricted for 10+ seconds for an average of 5 times per hour. This can lead to impaired oxygen transportation and have downstream physiological effects.

Many times, sleep apnea requires intervention in order to improve health outcomes associated with the disorder. While snoring can occur in the absence of sleep apnea, snoring intensity (measured in decibels) is positively correlated with obstructive sleep apnea intensity, and therefore warrants monitoring of snoring frequency and intensity, along with other physiological metrics to screen for sleep apnea.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Normal or acceptable range

It is estimated that ~49% of people experience occasional snoring, while 10-36% of people snore regularly. Currently, there are no recommended ranges or normative values for snoring, but generally less is better. Simple interventions, such as postural changes, breathing devices, and room conditions, can lead to decreased snoring, potentially increasing sleep quality. 

Interpreting Trends

Monitoring snoring over time may illustrate if/when snoring begins to affect physiology. Should snoring coincide with decreased SpO2, increased heart rate, awakenings, or self-reported fatigue, it is likely that snoring is affecting the quality of sleep, and may warrant intervention. Any changes in behaviors aimed at reducing snoring (postural changes, breathing devices, or room conditions) can be quantified using Biostrap’s sleep analysis, measuring snoring, sleep stages, awakenings, heart rate, SpO2, and more. 

Reading time: 2 min

What is it?

Sleep duration is simply the amount of time an individual is asleep. This measure is essential to quantify, as it directly impacts physiological and psychological parameters in the short and long term, impacting health, performance, and longevity.

What does it measure?

Sleep duration is the total sum of time spent asleep, regardless of sleep stage. Using combinations of heart rate, heart rate variability, breathing, motion, and pulse waveform data, approximating sleep versus awake time is possible.

Biostrap uses inputs from all the listed measurements to estimate light sleep, deep sleep, and time spent awake; therefore, the reflected sleep duration is the sum of light and deep sleep.

Correlation with health conditions

Total sleep duration is a commonly reported metric and highly correlates with health outcomes. Sleep is vital to regulating biological processes, allowing adaptation, recovery, and preparation. Many repair processes occur during sleep, with surges in growth hormones and reduction in stress hormones.

Physiologically, increased sleep duration has been shown to reduce stress, improve cardiovascular markers (e.g. heart rate, heart rate variability, and arterial stiffness), reduce weight gain, improve immune function, and lower risk of all cause mortality and varying diseases. As such, sleep appears to improve physiological pathways robustly.

In addition to physiological effects, increased sleep has many cognitive benefits, including improved memory, problem-solving, and reaction speed.

Normal or acceptable range

The American Academy of Sleep Medicine recommends at least 7 hours of sleep per night for adults aged 18-60 years. The National Sleep Foundation recommends supplementing this recommendation with 7-9 hours of sleep per night for adults aged 65 years and older.

Biostrap records users’ sleep each night, and from this data, we can gather average values of distinct populations.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Interpreting Trends

Considering the broad health implications associated with sleep duration, tracking sleep duration over time is recommended, so individuals may notice trends in their behavior. Including sleep duration into longitudinal metrics can either explain or rule out other physiological trends and therefore is included in Biostrap biometrics, allowing users and remote monitors to have a broader view of individual health.

Reading time: 2 min

What is deep sleep

Sleep can be broken down into four different ‘stages’ of sleep. Most commonly, sleep is divided into rapid eye movement sleep (REM) and non-REM (NREM) sleep. NREM sleep accounts for most of the sleep (75-80% of total sleep duration), while REM sleep makes up the rest. Within NREM sleep, there are three stages; the first stage is light sleep and is mostly the transitory onset of sleep; the second stage is also considered light sleep but makes up a longer duration than stage 1.

The third and fourth stages are considered ‘deep sleep’ and are characterized by slow brain waves. Deep sleep makes up roughly 13-23% of nightly sleep. It is during these stages that sleep is restorative and leads to many adaptive physiological outcomes that help the body adapt and repair. As such, deep sleep is more important than total sleep time, affecting health outcomes.

How it is measured

Deep sleep is often identified by slow waveforms on an electroencephalogram (EEG), which measures brain wave activity. As an alternative, deep sleep has been shown to have decreased movement and altered vital signs, particularly: lower heart rate, higher heart rate variability, lower blood pressure, lower temperature, and decreased sympathetic activity.

By measuring these changes using wearable technologies (accelerometers and photoplethysmography [PPG]), a close approximation of sleep stage can be made. This technology allows for passive measurement with much less equipment than a traditional EEG or polysomnogram.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Correlation with health conditions

Much like total sleep time, the therapeutic benefits of deep sleep have robust physiological effects across many organ systems. However, deep sleep appears to be a better indicator of the quality of sleep than the total duration of sleep.

Deep sleep has been shown to affect growth hormone production, glucose metabolism, synaptic processes (e.g. learning/memory formation), and immune function changes. Sleep restriction, influencing the duration of deep sleep, has been linked to many adverse health outcomes, including cardiovascular disease, diabetes, neurodegenerative diseases, poor cognitive function, and many more conditions. As such, it is essential to get adequate amounts of good quality sleep, permitting deep sleep.

Normal or acceptable range

Currently, there are not widely accepted values specific to deep sleep. For each sleep session, most individuals have 13-23% of their duration in deep sleep. The recommended amount of deep sleep has not been thoroughly evaluated, but many experts believe it is better to have more than less. It should be noted that exceptionally high amounts of deep sleep may indicate short-term deficiencies.

Interpreting trends

Deep sleep is a complex biometric that is difficult to quantify. EEG devices provide a strong understanding of sleep stages and progressions but are less realistic for an individual on a regular basis. However, using accelerometers and PPG wearables, light and deep sleep can be approximated on a nightly basis and easily tracked over time.

As with total sleep duration, tracking deep sleep can provide insight into its contribution to changes in health-related outcomes. As a more challenging variable to quantify, monitoring deep sleep over time can also provide insight into lifestyle changes and how they affect deep sleep. For example, tracking how a medication affects deep sleep may provide insight into its efficacy or side effects.

Reading time: 5 min

A good night’s sleep is essential. Too much sleep, however, can be detrimental to your health.

While we often hear talk of the importance of sleep, rarely do we hear about oversleeping. Oversleeping, or hypersomnia, can be a symptom of a medical condition or mental health condition that causes someone to sleep for extended periods of time. Additionally, oversleeping can put you at higher risk for health problems down the road.

So what more is there to know about oversleeping? Read on to find out how much sleep you need, what causes oversleeping, and what you can do to get some healthy shut-eye.

How Much Sleep Is Too Much Sleep?

Getting the right amount of quality sleep is important. The National Sleep Foundation publishes recommendations to help you get the right amount of sleep, and in general, 7-9 hours of sleep each night is the gold standard for healthy adults between the ages of 18 and 64.

That being said, a variety of factors can influence how much sleep you really need. For instance, differing genetics allow some individuals to feel well-rested after only four hours of sleep, as their circadian rhythms rely on less sleep. Meanwhile, children often require more sleep than adults, and older adults require more sleep than young adults. Those who are coping with a medical condition may also require more sleep as their body combats an injury or illness.

Generally speaking, a healthy adult who consistently sleeps for more than ten hours each night is oversleeping. If you find yourself oversleeping for prolonged periods of time, consider talking with your doctor to improve the quality of your sleep.

What Causes Oversleeping?

There are several reasons that may explain why an individual is oversleeping. We’ll take a look at each below.

Depression

Depression is one of the most common reasons a person may sleep too much. Depression often causes an individual to sleep more and experience lower energy levels in spite of this extra sleep.

Narcolepsy

Narcolepsy is a neurological sleep disorder that renders the brain unable to control sleep and wake cycles. Those with narcolepsy experience extreme daytime drowsiness and may even fall asleep during normal daytime activities like driving.

Hypersomnia

Hypersomnia is the medical term used to diagnose an individual that sleeps too much or experiences excessive daytime drowsiness, and it is diagnosed when oversleeping has no known medical explanation.

Obstructive Sleep Apnea

Obstructive sleep apnea is a sleep disorder that causes an individual to stop breathing for brief periods during the night. It can also cause oversleeping because it disturbs the natural sleep cycle.

Alcohol Use

Alcohol in any form can lead to sleep disorders and health issues such as sleep apnea or insomnia. Alcohol can also cause sleep disturbances that alter sleep patterns and lead to daytime drowsiness.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

The Impact of Oversleeping

While we often associate oversleeping with simply feeling drowsy, trends and research suggest oversleeping can be harmful in other ways as well. These are some of the health conditions that may be caused by oversleeping.

Weight Gain

Those who sleep too much tend to weigh more because of the general inactivity. The more an individual sleeps, the fewer calories they burn.

Depression

Just as depression can make you sleep for too long, it can also cause you to lose sleep which further promotes oversleeping later on. Those who are depressed tend to sleep more over time, and therefore grow more depressed due to oversleeping.

Pain

Physical pain such as headaches are more common among those who oversleep. This is because oversleeping triggers neurotransmitters in the brain that cause head pain.

Oversleeping can also lead to back pain because lying in one position for too long causes stiffness and aches. Those who suffer from physical pain often encounter poor sleep, and then compensate by oversleeping, which can create a self-perpetuating cycle.

Heart Disease

Sleeping too much can increase an individual’s risk of heart disease, which is the leading cause of death among both men and women according to the CDC. This risk is even higher for women because they often sleep longer than men.

Research published in the European Heart Journal showed that 14.8 individuals per 1,000 developed heart disease if they slept over ten hours per night, compared to just 7.8 per 1,000 that slept 6-8 hours per night. The reason for this increased risk of heart disease remains unclear, but researchers suspect that certain individuals may oversleep due to previously existing health conditions.

Diabetes

Sleeping too much can raise one’s blood sugar and increase the risk of type 2 diabetes. This disease may be more closely related to being overweight or sedentary rather than simply sleeping too much. We know there’s a correlation between oversleeping and type 2 diabetes, but we don’t know if the relationship is causal.

Mental Health

Too much sleep can have an adverse effect on mood and mental health. For instance, research suggests getting too much or too little sleep impairs cognition.

Additionally, degenerative mental diseases like Alzheimer’s may be fueled by too much sleep according to researchers at Brigham and Women’s Hospital. And much like depression can cause oversleeping, it can also be induced by getting too much sleep.

Oversleeping and Illness: Which Comes First?

Determining whether oversleeping or illness came first has proven to be a serious dilemma for researchers. By this we mean, does oversleeping cause illness or does illness cause oversleeping? While some studies suggest too much sleep leads to an increased risk of certain medical problems, others point out that a desire for more rest may be caused by a disease or illness.

A review of controlled studies on extended sleep illustrates that adults experience symptoms such as fatigue, irritability, and lethargy due to longer sleep. This may trigger a desire to sleep even more and perpetuate the cycle.

Other research conducted on young adults showed that spending an extra two hours in bed each night for three weeks left the study participants feeling more depressed, sore, and uncomfortable due to inflammation.

Getting Healthier Sleep

Sleep scientists are still researching the cause and effect relationship between sleep duration and health, but there are a few tactics you can employ to ensure you’re receiving high-quality sleep.

For starters, be sure you get between seven and nine hours of sleep each night. Any more sleep is considered oversleeping and any less sleep is often not enough.

Next, be sure to avoid oversleeping on the weekends. It may be tempting to sleep in when you have the time, but doing so can throw off your body’s circadian rhythm and make falling asleep more difficult when the weekday returns.

Use an alarm clock and avoid the snooze button to ensure you’re sleeping for a reasonable amount of time. It may be tempting to snooze the alarm and drift back to sleep, but doing so promotes excessive sleepiness when your body should be awake.

And finally, avoid napping past 5 p.m. as this makes it more difficult to fall asleep, and you run the risk of oversleeping when you finally hit the hay. Also avoid stimulants, such as caffeine, and bright light exposure from screens before bed. Taking naps in the evening and playing with devices can ruin your sleep quality and promote excessive sleepiness, which then make you sleep more.

Avoid Oversleeping

It can be difficult to avoid oversleeping when you’ve encountered sleep deprivation or you simply aren’t getting enough sleep. Oftentimes we compensate by sleeping for extended periods of time to make up for the lack of sleep we’re receiving.

Conversely, many health conditions such as depression, pain, and sleep disorders may cause us to oversleep, which then perpetuates the oversleeping cycle. If oversleeping is something you’ve experienced for an extended period of time, speak with your doctor to find out more about how you can get back to better sleep.

At the end of the day, simply remember that sleep is best in moderation. Too little sleep is bad for your health, as is too much sleep. Take some time to determine how much sleep your body needs, and employ sleep strategies to ensure you’re getting quality sleep when you need it most.

Reading time: 5 min

The circadian rhythm is an essential element of the human sleep schedule. It determines when we feel sleepy, when we feel alert, and how often we wake throughout the night. While the circadian rhythm is naturally occurring, it’s easily disrupted. Whether it’s blue light or a hormonal imbalance, both internal and external factors can influence the way our body regulates sleep.

So what is circadian rhythm, and why does it matter for sleep health? Read on to find out more about the importance of this natural physiological cycle.

What Is Circadian Rhythm?

Humans follow a 24-hour sleep-wake cycle, which tells us to sleep when it’s dark and stay awake during the day. This cycle is called the circadian rhythm, and it’s one of the essential biological processes for ensuring we get enough rest each night.

The circadian rhythm is driven by certain areas of the brain, explains the Division of Sleep Medicine at Harvard Medical School. For example, the brainstem and hypothalamus promote wakefulness by sending neurotransmitters, or chemical arousal signals, to the cerebral cortex. This keeps the cortex — the brain’s largest region — activated to keep you awake.

In contrast, neurons in a different part of the hypothalamus help a person feel tired by inhibiting these wakefulness messages. The neurons regulating your circadian rhythm work together harmoniously to promote a restful sleep schedule.

“The neurons that promote wakefulness inhibit those that promote sleep and vice versa. This interaction normally leads to either a relatively stable period of wakefulness or a relatively stable period of sleep,” adds Harvard’s Sleep Medicine Division.

Feeling sleepy at bedtime is also dependent on the timely release of melatonin, the hormone that regulates sleep. Melatonin is driven by external cues like sunlight and darkness. Without our circadian rhythm, we’d have an inconsistent sleep-wake cycle, and we might not get the rest we need to keep us energized throughout the day.

Factors That Influence Circadian Rhythm

Even though the circadian rhythm is regulated by the sun, it’s also sensitive to lifestyle and environmental factors. In turn, throwing off your biological clock can lead to serious sleep deprivation, irritability, depression, fatigue, headaches, and a host of other ailments. If you feel like you can’t fall or stay asleep when you should — or waking up is a constant chore — these are a few things that might be getting between you and a good night’s sleep.

Mental Illness

Circadian rhythm can be influenced by mental illnesses such as bipolar disorder. Sleep disturbances are a common feature of those with the disorder. Studies show that circadian rhythm disruptions are much more common in people with bipolar disorder than those with other major depressive disorders. This suggests that disruptions to the sleep-wake cycle are a hallmark sign of bipolar disorder and a way to differentiate it from other mental illnesses.

Seasonal affective disorder (SAD) is another depressive condition that can lead to circadian rhythm irregularities. Affecting about 5% of the population, people with seasonal affective disorder experience depression only during the late fall and winter months, when the days are shorter and periods of darkness are longer. Reduced exposure to sunlight may trigger a chemical imbalance in the brain, which can subsequently influence both mood and sleep cycle.

Sleep and Work Schedule

If you’re a self-proclaimed night owl or you work the graveyard shift, your body clock is likely to suffer. Holding a job at non-traditional hours may make you more susceptible to shift work sleep disorder, which is characterized by excessive sleepiness and an inability to concentrate or stay energized during the daylight hours.

In addition to making a person more tired, people who experience shift work disorder may become more prone to accidents. From a mental health perspective, they can have poor coping and interpersonal skills or struggle with mood swings.

How to Reset Your Circadian Rhythm

Whether you pulled an all-nighter or traveled through time zones, we all experience sleep disruptions from time to time. Here are the best science-backed tips for resetting your circadian rhythm and getting back on track.

Follow Good Sleep Hygiene

Good sleep hygiene is essential to maintain a proper sleep-wake rhythm. As explained by the American Sleep Association, practicing good sleep hygiene means making healthy changes to your daily schedule to promote restful sleep.

One example of good sleep hygiene is setting boundaries with technology in the bedroom. Since the blue light from electronics can disrupt your circadian rhythm, you might decide to stop using smartphones and tablets a few hours before bedtime. Additionally, you might decide to remove televisions, computers, and even smartphones from the room during sleep to help you create a more restful sanctuary.

This is also important because it helps you associate your bedroom particularly with sleep. When you’re constantly working on a laptop or scrolling through social media while lying in bed, your body will begin to associate that space with wakefulness, rather than sleep.

Timed Eating and Exercising

Eating or exercising too late into the night can keep you awake and disrupt your circadian rhythm. Specifically, too much cardio too late into the evening can trigger endorphins that keep you awake and alert for a few hours. That’s why it’s a good idea to end any intense physical activity at least two hours before bedtime.

Instead, try guided relaxation or gentle stretching to calm your mind and send signals of calm. Likewise, eating late means you’ll be digesting late, and since digestion requires the body to create energy, this too can keep you awake. Try to have your last meal at least three hours before bedtime.

Use Bright Light Therapy

If you’re struggling with seasonal affective disorder, bright light therapy can help get your circadian clock back on track. Since sunlight exposure is what regulates your circadian rhythm, exposure to artificial light at the right time can help a person get back to a normal sleep schedule. This is especially useful in places far north of the equator where long periods of darkness persist during the winter months.

“Light therapy is used to expose your eyes to intense but safe amounts of light for a specific and regular length of time. In many places, sunlight is not available at the proper time to be used as treatment,” says the American Academy of Sleep Medicine.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Maintain Sleep Cycles While Traveling

If you’ve ever taken a plane to a different time zone, you know how disorienting it can be. Desynchronosis — more commonly known as jet lag — is a circadian rhythm disorder that can cause fatigue, insomnia, anxiety, irritability, and several other physical symptoms. To prevent the onset of jet lag and ensure it doesn’t throw off your sleep schedule, Clayton Sleep Institute suggests adjusting your sleep schedule gradually before you leave.

If you’re flying east, go to sleep and wake up one hour earlier each day for three days before departure. For west-bound trips, go to sleep and wake up an hour later each evening and morning “for as many time zones you will cross, or as many as you can manage given the distance you are traveling,” states the institute.

Regardless of how much you’ve prepared for the time-zone change, do your best to get on the local time as quickly as possible to reduce potential sleep challenges. This will help you get better sleep and boost your overall well-being both during and after the trip.

Regulating Your Circadian Rhythm

Your circadian rhythm is the internal body clock that regulates sleep patterns and many other physiological processes. When your internal clock is disrupted by environmental or psychological factors, you’re likely to suffer from fatigue, irritability, and depression.

Fortunately, understanding how this 24-hour cycle works — and what mental health problems and sleep habits affect it — can get you back on the road toward deep sleep (and maybe even toward becoming a morning person).

Reading time: 7 min

Running a 26.2 mile marathon is on many bucket lists. Rooted in Greek history, the distance attained legendary status when Phidippides ran from Marathon to Athens to announce a victory. The word itself is a ubiquitous metaphor for any sustained effort. But for some people, 26.2 miles is not enough. In fact, it’s just the beginning.

Ultrarunning begins where the marathon ends. It’s defined as any distance greater than 26.2 miles.

But did you know that Phidippides was also the first known ultrarunner? He died suddenly after running more than 175 miles in two days (culminating in the marathon). That’s right, ultrarunning is so badass that the guy who invented it died doing it.

Phidippides’ death in 490 B.C. hasn’t discouraged the runners who’ve followed. The training is mind numbing. The trails rocky, remote, and arduous. There is little prize money or glory. “Some people think I’m crazy to run 100 mile races,” says ultra coach Keira Henninger, “I think I’m the luckiest person on the planet to experience a physical and emotional journey in the most beautiful landscapes in the world.”

So how hard is it to run 100 miles? And what happens to your body when you do?

Your body on Ultras

Running an ultra is not for the faint of heart. Raceday risks include:

  • Hallucinations
  • Blurred vision
  • Insect bites or stings
  • Cuts and bruises
  • Heart problems
  • Respiratory ailments
  • Dehydration
  • Electrolyte imbalance
  • Hyponatremia
  • Hypothermia
  • Gastrointestinal problems.
  • Muscle cramps
  • Stress fractures
  • Blisters

Each organ of the body is impacted by the effort.

The Heart

Running an ultra stresses a runner’s heart during and after the race. Most finishers exhibit elevated Troponin I, which can indicate heart damage. There is continuing debate whether it causes lasting damage. Sustained exertion impacts each side of the heart differently. The left can become stronger through running. The right side, however, can dilate and weaken. For some vulnerable runners, this dilation and related scar tissue can cause cardiac arrest. There is a slightly elevated post-race risk of atrial fibrillation, an irregular heartbeat and temporary cardiac dysfunction.

In some regard, ultra are less risky than marathons. Marathoners spend the majority of their race at 75 to 85 percent of their maximum heart rate. Ultrarunners stay in the 50 to 65 percent range. This lower intensity lessens the risk of race day cardiac events.

Outside magazine calls the heart a Runner’s Ticking Time Bomb, reporting that one in 200,000 runners will experience cardiac arrest, and one in 50,000 will experience a heart attack from coronary artery disease during a marathon. For this reason, doctors recommend more pre-race screening.especially for ultra which tend to be held in remote areas away from trauma centers or critical care centers.

Heart attacks can mimic normal race exertion. Sweating, difficulty breathing, chest pain-all can be both normal parts of extreme running. Or signs of a heart attack. Gordon Tomaselli, a cardiologist at the Johns Hopkins Outpatient Center, explained an athlete’s ability to run right through all the warning signs. “”you can be totally asymptomatic, and your first symptom is sudden death.” It’s important for runners to be cardio-cleared before undertaking ultras.

Phidippides cardiomyopathy

The sustained cardiac effort of an ultra can tax the heart with volume overload. This syndrome is named for the speculative cause of death of the first marathoner, Phidippides.

Limbs and Joints

Ultrarunners average 5000 strikes of the foot to the ground per hour.. This has a colossal cumulative effect on the joints, especially the feet and knees. Stress fractures are common. Toenails often turn black and fall off. Joint pain may arise during the race and continue after it’s finish.

Muscles

Runners use glucose for energy. Lactate is a byproduct of the breakdown process, but can also be converted back into energy. At some point your body can no longer convert the lactate. Acidity in the muscles builds up. This is called the lactate threshold.

Arm fatigue can leave you unable to hold your water bottle.

Foot-eye coordination can help avoid stumbles and falls as muscles tire.

Central fatigue can strike, along with exercise-associated collapse syndrome, where a runner’s muscles simply stop working. Training before the race, and pacing and rest during the rest, is key to performance, recovery, and injury prevention.

Although the intense driven runners who seek out ultras are not naturally inclined to hold back or pause for a spell, resting smart can mean the difference between finishing the race or dropping out. Otherwise runners will ‘bonk’ or hot a wall, a full depletion of energy described as a “unique and instant kind of despair”. If your heart rate is too fast the heart is straining to maintain blood volume and deliver oxygen to your muscles. A slowing heart rate can signal fatigue as the pace slows and the body demands less oxygen. Appropriate pacing, hydration, and fueling promote a steady heart rate.

Mind over Matter

Training and race day efforts are overwhelmingly physical. But focus and mental toughness also play a significant role.

Tracy Gariepy ran 300 miles from North Carolina to Georgia to raise money for Girls on the Run. “The human body is capable of FAR more than you give it credit for,” says Tracy, “your mind will attempt to pull you out of the race long before your body really needs to. But you walk (or crawl) away from an ultra a different person than you were when you toed the starting line.”

Science has even quantified how much mental toughness counts. Measuring traits such as confidence, the sense of being in control, concentration, determination, and acceptance of responsibility, researchers found that mental fortitude accounted for 14% of racing success. The ability to set goals and refocus efforts significantly improved race results.

Salt Levels

Our bodies naturally balance sodium and water. But the exertion of ultras can challenge this survival mechanism and our electrolyte balance.

Runners who finish 100 miles have temporarily abnormal (elevated) kidney values as they flush the remnants of broken muscles from their blood . Cola colored urine is a dangerous sign of possible rhabdomyolysis which can lead to organ failure. Weight gain during a race is another signal that runners are not sufficiently excreting water and salt.

Runners in hot climates are 10 times as likely to have a brain centered heat stroke than a cardiac event. Hydration, cooling, and salt intake can prevent a life threatening event.

Caloric Intake and Digestion

Unlike shorter distances where runners can get by on the odd post-race banana, ultra runners need as much as 80g of carbs an hour to maintain their energy. Runners are burning 400 -600 calories an hour. They need supplemental calories to replace the glycogen depletion. Ultra aid stations can resemble picnics with sandwiches, pasta, burgers, candy, even beer. to eat during the race.

This food poses a special problem for the ultra runner. But running triggers the parasympathetic response. Adrenaline courses through the body. Blood moves away from the internal organs to fuel and oxygenate the muscles. This dulls appetite and slows digestion. 60 percent of runners will get nauseous, perhaps from lactate build up as they reach the lactate threshold.

You must keep eating,” says ultrarunning expert Kieran Alger, “It’s a horrific notion and a cruel trick but the thing you desire least is the thing that’s going to cure you.” As cortisol levels rise the body targets fat stores to prevent muscle fatigue.

Sleep

Sleep deprivation. It’s possible the hallucinations experienced by some ultrarunner are the body’s attempt to make up for lost sleep. Dean Karnazes author of “The Road to Sparta” has run for three days and three nights straight. He said eventually he ends up sleep running: “falling asleep while in motion, and I just will myself to keep going.”

Environmental Risks

Remote settings complicate emergency medical treatment. Race doctors need to be ready for everything from trauma, acute coronary syndrome, heat stroke, hypothermia, hypoglycemia, exercise-associated hyponatremic encephalopathy, severe dehydration, altitude illness, envenomation, anaphylaxis, and bronchospasm.

Besides the physical and mental risks, ultra runners face environmental dangers on the trail: from lightning, falls and animal attacks. This is not hypothetical. In June 2016 a trail runner was killed by a bear in Alaska.

In 2014 Adam Campbell finished third in the Hardrock 100 ultra distance trail run, after being struck by lightning at mile 60.

An Old Man’s Game?

UltraRunning Magazine reports two thirds of the runners are men, and more than half are over 40. Unlike shorter distances where youth and speed are an advantage, ultras rewards patience and conservation of resources When it comes to pacing and planning, experience counts.

Born to Run?

Author Chris McDougall says humans are born to run. But he acknowledges, “Usain Bolt can get his ass kicked by a squirrel. That would be an Olympic event: turn a squirrel loose, whoever catches it gets a gold medal.” What’s remarkable is that women become more competitive as distances get longer, and older man can complete ultras at speeds comparable to their youth.

Training

Racing an ultra requires obsessive focus. MMA Fighter Jayquan Jackson stresses preparation: “80% of your muscles are made in the kitchen,“ he says. “Even if you are in great shape, don’t expect to just wake up one day and be a marathon runner. There will be many days where you don’t feel like running, many days where you don’t want to get up, and many days where the idea of going outside makes you want to shove cake in your face until you pass out. Consistent boosts of motivation is key.”

When it comes to training, a focus on time not miles can ensure a runner is ready but not overtrained.

“Burning around 14,000 calories in a day is a challenge,” says Carson Robertson an ultra runner and chiropractor, “and doing it without serious injury takes training.” Robertson, who teaches Anatomy and Physiology adds, “To me 100 miles is like motorcycles. You either get it or you don’t.”

Shawn M Talbott, PhD has completed more than a dozen ultra marathons. “I like ultras more for the mental challenge than for the physical challenge, “ says Talbott, a nutritional biochemist, “they are almost certainly not “good for you” in terms of health effects – but they are very good for the “soul” and for finding your mental limits.”

Other Races

An ultra race is any distance over a marathon’s 26.2 miles. There are many varieties.

The Longest Race

The Self-Transcendence 3100 mile race is the world’s longest certified footrace.Entrants run from 6am to midnight for 52 days. They must average 60 miles a day.

The Secret Race

Barkley Marathons, the world’s toughest and most secretive trail race was featured in a documentary. “The only prize,” says the The New York Times, “is that after 100 miles, they get to stop.” Also known as The Race that Eats its Young, the entry procedure is an off-putting complex mystery, many runners get lost, and less than 2% finish.

Triumph of the Human Spirit

That an ordinary person can physically train to run 100 miles for three days and nights is amazing. The fact that folk continue to seek these races out, and finish them, is a testimony to human will and aspiration.

Blisters? Heatstroke? Bear Attacks? Endurance running is not for everyone. It offers an exquisite intersection of mental challenge and physical prowess. Those who can do it, often choose to do it again.

“You could experience 10 hours of rain, 12 hours of sun, a headwind for 50 miles,” says running coach Kyle Kranz. “It’s cliche, but upon completion of your first ultra marathon, you sort of get a sense that you’re pretty fricken awesome and capable of more than you thought.

And that’s exactly why, hard as these ultra races are, folk will continue to run them.

Reading time: 7 min

Whether you’re getting only five hours of shut-eye or snoozing through your morning alarm, we all need a healthy amount of high-quality sleep to remain productive, attentive, and ready to conquer the day.

Yet, many fail to realize that a clear distinction exists between quality sleep and sleep that does little for your overall health. While getting eight hours of sleep per night may sound healthy upon first glance, it’s the quality of your sleep, not just the quantity, that truly matters. For this reason, sleep analysis has become an important benchmark that we can use to monitor our sleep and understand our overall health.

“The importance of tracking your sleep and sleep analysis rests on what an individual is trying to figure out,” says Dr. Christopher Winter, owner of Charlottesville Neurology and Sleep Medicine and CNSM Consulting. “It’s important for us all to track our sleep, but it’s more important to think of why we’re tracking our sleep in the first place.”

So what exactly is sleep analysis? In short, sleep analysis is the process of monitoring your sleep patterns over time, with help from sleep trackers and fitness wearables, in an effort to ensure you’re receiving quality sleep. And if you’re not experiencing sufficient sleep, then the sleep data you collect can help you make informed decisions that will give you a chance to get better sleep.

Read on to learn more about the basics of sleep, what factors influence the quality of your sleep, and what you can do to track and analyze your sleepover time.

The Various Stages of Sleep

There are four primary stages of sleep to be aware of. We refer to these stages of sleep collectively as the sleep cycle.

The first stage of sleep is the lightest stage. It’s known for producing non-rapid eye movement sleep, or Non-REM sleep. During this light sleep stage, your eyes move slowly beneath your eyelids and you can be easily disturbed by your environment — noises or movement can wake you rather easily. Your muscles will slowly relax, your body temperature will drop, and your brain will transition into a period of rest as internal systems prepare for a more peaceful, deeper sleep in stage two.

The second stage of sleep occurs when your body begins to produce rapid eye movements (REM). This stage of sleep is also known for producing sleep spindles, which are short bursts of brain activity meant to protect your brain from waking during deep sleep. Unlike stage one of the sleep cycle, you can’t be woken as easily during this REM stage of sleep.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

The third stage of sleep is known as deep NREM sleep. During this stage, your brain will produce slow-waves as your body and mind work to heal themselves after a full day of activity. Abruptly waking up during this stage of sleep is uncommon, and sleeping events such as sleepwalking and sleep talking occur during this stage.

The fourth and final stage of sleep is known as REM sleep. This is where vivid dreams take place because your brain waves are more active than they are in stages two and three. Your eyes will again move back and forth, but only until your body starts the cycle over again. You run an increased risk of feeling groggy or suffering from sleep inertia the following day if you’re woken during REM sleep.

One sleep cycle will last anywhere from 100-120 minutes, and you’ll transition through four or five cycles per night.

Ensuring you reach each of the different stages of the sleep cycle is important, but there’s more to this story than meets the eye. “How we feel about our sleep can impact our daily performance more than how we actually slept,” notes Winter. “Belief about sleep really influences the way we report it to other people and the way we perform that day.” For this reason, it’s crucial that we not only transition through the four stages of sleep but that we believe in our ability to get beneficial sleep too.

What Factors Influence Your Sleep?

Sleep analysis: A woman sleeps with a Biostrap sleep tracker on his wrist

We collectively refer to the many sleep habits that determine whether or not you receive a good night’s sleep as sleep hygiene. Below you’ll find a comprehensive list of the internal and external factors that will influence your sleep.

Stress

Stress is a common feeling that has the ability to influence our sleep. When our bodies are responding to stressful or dangerous situations, often we’re left lying awake in bed wondering how we can get some rest. “Stress typically tends to lighten sleep,” says Winter. “We become much more aware of arousals or it makes it more difficult for people to get to sleep or even fall back asleep if they wake back up.”

The same sleepless outcomes are often reported by those who have anxiety, depression, and other mental health conditions that have a tendency to influence our sleep duration and sleep quality.

Aches & Pains

It comes as no surprise that aches and pains in any form will influence our sleep. Be it muscle or joint pain or even a simple headache, these conditions bring on the discomfort that makes it difficult to fall asleep and stay asleep. “The quality of the sleep also influences how we heal,” notes Winter. “If you’re not sleeping well because of the pain, it makes it harder for you to get past the pain.”

Stimulants

Though a cup of coffee may seem enticing in the late afternoon as you try to make it through the day, the boost of caffeine can wreak havoc on your sleep.

“This can easily be a double-edged sword,” says Winter. “I may need stimulants like coffee to get through my day and not fall asleep behind the wheel, but if I take them too late or the timing is off, it really does influence how I sleep or how I feel.” Other stimulants such as alcohol can also interfere with a good night’s sleep. As a result, it’s best to avoid all stimulants before bed, even if they make you drowsy.

Shift Work

Shift work has the ability to alter your body’s circadian rhythm, which naturally determines when you feel sleepy, when you feel awake, and how often you wake during the night. Because shift work manipulates when you go to bed, your body’s internal clock will grow confused as it tries to find sleep patterns within your changing schedule.

“It’s not just sleep we’re talking about,” says Winter. “ Everything in our body is timed. It all works on a schedule, and when the schedule is in flux, it creates significant problems for the body beyond just feeling exhausted and poorly rested all the time.”

Sleeping Environment

A sleeping environment that contains loud music, bright lights, and distracting electronics is no place to get healthy sleep. “That 24 hours of technology really does affect the brain in negative ways and sleep in negative ways as well,” according to Winter. Your sleep environment should be quiet and free of any distractions that prevent you from falling asleep and staying asleep.

Sleep Disorders

“Sleep disorders are so much more common than people know,” says Winter. “They’re some of the most commonly undiagnosed disorders out there.” Disorders such as insomnia or sleep apnea influence the sleeping habits of millions around the world.

Whether these disorders are short-term problems or chronic issues, poor sleep as a result of a sleep disorder will stop you from getting the rest your body and mind crave. Sleep medicine can help you sleep better, but you should discuss your options with a healthcare provider before determining what you can do to overcome a sleep disorder.

Sleep Tracking With Modern Technology

Sleep Tracking: Woman looks at Biostrap dashboard in the morning

Now that we have a solid understanding of how we sleep and what factors will influence our sleep, it’s time to examine sleep analysis in greater detail. To analyze our sleep, we rely upon sleep trackers, smartwatches, and other wearables that contain technology capable of monitoring sleep patterns.

Wearable sleep trackers will often do more than simply track sleep. In fact, many of these devices are fitness trackers that record your physical activity throughout the day and night.

For instance, a biometric tracker will monitor and analyze your sleep, as well as track other health metrics such as your heart rate and oxygen saturation. After the data has been recorded, it will sync with your phone via a health app that provides digestible information about your sleep habits.

“These devices can really help people understand when you’ve moved past what you can do on your own,” says Winter. “The field of sleep is wide open, and these devices might help you understand when you’ve progressed well past something you can fix by yourself.” If a sleep tracker is reporting information that you need help understanding or resolving, bringing that data to a sleep doctor or physician can be a crucial step toward achieving better sleep and better health.

Most devices that are capable of sleep tracking are worn around the wrist. These pieces of tech contain an accelerometer that detects body movements to determine whether you’ve had a restful or restless night of sleep. Some devices include sleep coaching technology that provides suggestions to help you get better sleep if there’s room for improvement.

Advanced sleep trackers will go one step further by evaluating your sleep quality based on the different sleep stages described above. These devices can produce graphs or visuals that pinpoint the amount of time spent in each sleep phase, thus highlighting when you slept well and when you didn’t.

Get Better Sleep With Sleep Analysis

These fancy devices aren’t just for show. The data they provide can help you get better sleep by providing critical insights into your nightly sleeping patterns. But remember that the information collected by these devices is only as useful as you make it out to be.

Tracking your sleep is important, but so is implementing healthy sleep habits that include eliminating distractions and seeking professional help if need be. Invest in a sleep tracker to analyze your sleep, learn what your sleep patterns are over time, and decide if you need professional help to get the healthy sleep your body and mind deserve.

Reading time: 4 min

It is normal for us as humans to feel tired. It can be a multitude of factors that contribute to our own personal fatigue; work, physical activity, and stress. When athletes feel tired it can be from a buildup of fatigue from a hard day of training, or due to a lack of recovery from a previous day. Feeling a bit off for a day or two is normal. Our bodies need time to recover and muscles can go through periods of fatigue for a few days. The problem is when that feeling begins to linger and become more pronounced, that is when flags should begin to raise. There are a large number of factors that can contribute to fatigue and it is best to always consult a physician if you feel that you suffer from chronic fatigue. For now, we can take a deeper look into a condition many of us face; anemia.

What is Anemia?

Anemia is a condition in which your body’s blood contains a lower amount than normal of red blood cells. Another way to define anemia, is when your red blood cells do not contain enough hemoglobin. It may get a tad confusing from sorting through different sources that talk about anemia, or “iron deficiency” but we can discuss it further to ensure there is no confusion!

Let’s break this down a bit:

Our blood is made up of a few different parts: red blood cells, white blood cells, platelets, and plasma. Each part of our blood serves a specific purpose and job. Red blood cells are made in the marrow of bones and are disc shaped and help to carry oxygen throughout our body. This is especially needed during exercise, when red blood cells are sent to our working muscles to help supply oxygen. Red blood cells also work to remove carbon dioxide from our bodies.

White blood cells are also created in our bone marrow and help us to fight off sickness and infections. Platelets help to form clots to stop further bleeding. All of these components of blood can be affected by anemia.

Another important piece of blood is, hemoglobin. Hemoglobin is a protein that helps red blood cells transport oxygen from the lungs to the rest of our body. Hemoglobin also helps to give our blood its red color. Iron, is an essential protein of hemoglobin that helps make this transfer of oxygen from the lungs to the muscles possible. Iron is also essential in the production of ATP (adenosine triphosphate), a key factor in our body’s energy source. Iron is not produced naturally within our bodies so it is essential that we obtain it from outside sources. Ferritin, is another key player in our bodies. Ferritin is also a protein that helps to transport iron and release it in the body when necessary. Ferritin is important to understanding and connecting anemia, hemoglobin, and iron deficiencies.

If an individual suffers from anemia defined by lower red blood cell count, your body will begin to fatigue faster. You can also remain in a state of fatigue for longer bouts of time as this condition progresses. When our red blood cell count drops, our body is no longer receiving the proper amount of oxygen rich blood to supply it with energy. Take exercise for example: when we begin a workout, our body senses this change in activity and makes it a top priority to send blood to our working muscles. When we do not have enough red blood cells there is a decrease in oxygen and our muscles are “starved” to put it in perspective. They are unable to complete the workload due to lack of oxygen being supplied. We begin to tire much faster than we had before and this is due to a buildup of lactic acid in our muscles.

If an individual suffers from anemia defined by low amounts of hemoglobin. Individuals may have normal levels of RBC, but if their hemoglobin levels are below normal, then our body’s can experience very similar effects to the anemia discussed before. Fatigue will begin to set in quickly, especially during efforts of activity in which we need oxygen supplied to our working muscles.

Individuals can also be affected by low amounts of Ferritin levels. This means that you may potentially have normal levels of hemoglobin and are only iron-deficient. This case is not as severe as anemia.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

These types of anemia and iron-deficiency yield similar symptoms: fatigue, weakness, shortness of breath, and headaches. Symptoms can also progress, and you do not want to leave this unchecked. Fatigue experienced through anemia can be different for each individual, and it is very prominent in athletics. Athletes can go day to day performing workouts and training loads in a normal routine, and then experience periods of time when it seems as though no amount of physical rest will help them recover. It is vital for athletes to get their blood checked regularly to monitor their red blood cell levels as well as hemoglobin. What may seem like small decreases in each can have drastic effects on some individuals. Creating a baseline level is crucial to optimal performance. Being able to catch slight drops in levels can help save a season of training.

Combating Anemia and Iron Deficiency

There may not always be one finger to point when it comes down to determining the root cause for why individuals are affected by anemia. A few large factors (especially when it comes to athletics) can include an improper nutrition, improper absorption, increase in training (duration and intensity), and blood loss. Blood loss is especially true when speaking to the female population as they go through menstruation monthly.

According to the National Institute of Health, the RDA (recommended dietary allowance) for iron is 16.3–18.2 mg/day in men and 12.6–13.5 mg/day in women older than 19. While most of us may hit this range daily, individuals performing and competing at high levels daily, may have a harder time obtaining this level. Ensuring that we are consuming proper amounts of nutrients is vital to maintaining normal iron levels. Eating foods that are iron rich can help combat anemia. These foods include: spinach, lentils, quinoa, and meat (beef and liver.) It is always best to receive your iron sources from food before you go to supplements.

Finally, sometimes it is best to just give your body what it needs: rest. We cannot sustain tremendous amount of load for a year. We must train in blocks of time and give ourselves days and weeks to recover after each. When we are training, we are destroying red blood cells as we work, known as “exercise-induced hemolysis.”

Sometimes our bodies know what is best for us. It is quite incredible how quickly we can detect changes in blood levels and fatigue levels. Having a better understanding of where fatigue may be coming from, can help us correct it that much faster. As stated previously, it is best to go for routine blood work if you think you may be falling victim to anemia or iron deficiency. Always consult with your doctor prior to starting any exercise changes or nutritional changes.

Reading time: 5 min

Modern diets are a dime a dozen. Scrolling through social media, you’d think everyone was on some sort of diet the way they’re discussed in such fervorous detail.

The ketogenic diet, or “keto diet” for short, eliminates carbs entirely and is a favorite of bodybuilders. The South Beach Diet insists a low-carb approach is the healthiest diet for you heart. And even eating techniques like intermittent fasting are diets in their own unique way, suggesting we eat during specific periods of time throughout the day while restricting food entirely during others.

Truth be told, there’s no single diet that solves every problem, nor is every diet safe for every person. That being said, there are eating methods we can adopt that utilize the basic principles of a diet alongside simpler rules for consumption. One of these diet plans that’s proven to have a significant effect on one’s health is referred to as carb cycling.

No, this method doesn’t involve eating a bowl of pasta before spending hours on a bicycle. Instead carb cycling is a diet plan that seeks to simplify carbohydrate intake over a period of time, thus leading to weight loss as a result. But before we delve too deeply into the process of carb cycling, let’s begin with the basics. Let’s start with the simple carbohydrate.

What Is a Carbohydrate?

There are three main macronutrients that our body gets from food: fat, protein, and carbohydrates. Fat is stored in large amounts throughout the body and acts as a slow-burning fuel. A gram of fat contains 9 calories. Protein, on the other hand, is used to make hormones, build muscle, and create enzymes. A gram of protein contains 4 calories. And finally, carbohydrates are stored in the body as glycogen and act as the main fast-burning fuel source for the body and brain. A gram of carbohydrates also contains 4 calories.

While carbs may serve a number of functions, their primary responsibility is to provide the body with a source of energy. They’re the body’s most readily available form of fuel. Yet because our body will only need a certain amount of fuel from carbohydrates each day, excess carbs are converted to fat for future use when needed. But often times such stores of fat can go unused, thus contributing to an increase in body weight over time.

The solutions we can utilize to combat this conversion of carbohydrates to fat are numerous. For instance, we can attempt to burn fat and carbs by exercising regularly. We can reduce our calorie intake each day or practice healthy eating habits that provide fewer carbs. Or we can adopt a technique like carb cycling, which aims to match the body’s need for glucose with a specific activity, or our overall activity levels. That final option remains one of the healthiest ways to regulate our carbohydrate intake.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

So How Does Carb Cycling Work?

You may now be wondering how exactly carb cycling works. If the intent is to match the body’s need for carbs, what measures can we take to ensure this occurs?

When breaking down the carb cycling procedure, we must start by discussing how we use carbs during different carb cycling days. While most people are generally consistent in terms of daily carbohydrate intake, carb cycling seeks to manipulate intake in a regimented fashion. These days can be categorized as high-carb days and low-carb days.

High-Carb Days

Think of all the food you’ll consume on any given day. Most of us will incorporate breakfast, lunch, dinner, and snacks between meals. Yet as we all know, higher-carb days are bound to occur throughout any given week. Perhaps your morning will start with a bagel, and the night will end with a hearty bowl of pasta, followed by a slice of cake for dessert. When days like these occur, and we’ve increased our carb intake more than we otherwise would, this is considered a high-carb day.

So what do we do when we’ve got a day ahead of us that’s chock-full of carbs? Ultimately, our goal is to match that increased intake of energy-dense macronutrients with high-intensity workouts that are sure to burn the carbs off.

When we exercise at high-intensity, our body requires more fuel from carbohydrates to meet the increased energy demands. By breaking down the carbs either aerobically (with oxygen) or anaerobically (without oxygen), the body is using more carbohydrates during the workout itself, as well as after the workout to make glycogen to refuel and decrease muscle breakdown.

Low-Carb Days

So what happens if the day is reversed? You’ve eaten far fewer carbs, and instead have relied on healthy fats like avocado or protein from meat and veggies as opposed to that plate of pasta.

This is the other end of the spectrum that completes the cyclical carb “cycle.” While it was once believed that low-carb days ensured little need for exercise, recent research has instead suggested that training on low-carb days can still serve a purpose by speeding up any adaptations to aerobic training while increasing fat burning and thus improving endurance.

By participating in days of low-carbohydrate consumption, the body is forced to rely on fat as the primary form of energy, thus increasing aerobic capacity, defined as “the maximal amount of physiological work that an individual can do as measured by oxygen consumption.”

However, the body must grow accustomed to a diet that reduces the total amount of carbs if it’s to burn fat on a consistent basis. While fat loss is often a product of utilizing the carb cycle, the body will still be dependent on carbs in the short-term before progressing to fat as the primary energy source.

A Carb-Cycling Schedule

Though the schedule below leaves room for customization, this is a solid example of your typical carb-cycling routine. Remember that lower-carb days can still be accompanied by exercise, but high-carb days should most certainly be combined with training days, as is standard procedure for the carb cycling diet. The schedule below also fails to address the opportunity for a rest day, but these can be incorporated once per week if needed.

  • Monday: higher-carb day
  • Tuesday: lower-carb day
  • Wednesday: higher-carb day
  • Thursday: lower-carb day
  • Friday: lower-carb day
  • Saturday: higher-carb day/optional reward day to enjoy a favorite meal
  • Sunday: lower-carb day

Keeping Your Diet in Mind

While it may be easy enough to keep track of the carbs we consume while exercising accordingly, often our diet and everyday meal plans alone can play a sizable role in our body and brain health. A low-carb diet or even a moderate carb diet that relies on whole foods and high-protein is a common means of altering one’s body composition. When we elect to maintain a healthy diet, many changes can take place.

That being said, it’s important to consult a nutritionist or dietitian when considering an extensive overhaul of your diet. Any form of food consumption that suddenly alters protein intake, fat intake, or carb intake can be dangerous for those with an insulin sensitivity or blood sugar concerns.

Additionally, weight loss in any form is a product of both diet and exercise. According to Shawn Talbott, nutritional biochemist and former director of the University of Utah Nutrition Clinic, “weight loss is generally 75% diet and 25% exercise.” It’s not a product of diet alone. To ensure we’re establishing our exercise routine alongside this new diet plan, we can use measurement techniques like the rate of perceived exertion scale, to make sure we’re exercising at the correct level for our personal fitness.

The most difficult aspect of carb cycling tends to be sustainability. While we can go perhaps one or two weeks on any given diet plan, low-carb diets are no easy task. As a result of this reality, medical professionals often recommend striving for a more balanced plan that focuses on fruits and veggies, lean proteins, and whole grain carbs.

Because cutting calories too low can lead to a decrease in muscle mass, the general rule of thumb is to allow 10 calories per pound of body weight — so a 125-pound person should strive to consume 1,250 calories per day, thus leading to weight loss no matter how much you exercise.

Is Carb Cycling for You?

Determining whether or not you should participate in a carb cycling diet requires research and experimentation based on your lifestyle and fitness routine. Striking a balance between high-carb and low-carb days is a process that can change in the long-term, so be patient and pay attention to your body as you go. Incorporating exercise and even consistent sleep are other necessary tools to ensure your carb cycling is as effective as possible.

To learn more about carb cycling, be sure to consult a nutritionist or dietitian rather than go it alone. Carb cycling allows for flexibility and empowers choice, making it one of the most popular diets in that ever-expanding catalog of dieting options. And it could be a more sustainable option for carb-cutters with a love of pasta.

Reading time: 5 min

Our body works endlessly to keep up with our daily demands. From getting out of bed in the morning to sprinting up a hill, we put bones, ligaments, and muscles to the test, each and every day.

Sometimes our body experiences pain and discomfort as a result. Maybe deadlifts at the gym lead to back pain, or a sports injury causes chronic pain that you can’t seem to shake. To treat these aches and pains, we can employ a wide variety of techniques and treatments — from general stretching to physical therapy and beyond.

One form of treatment to alleviate pain and promote healing is microcurrent therapy. Used to treat a wide variety of injuries, microcurrent therapy will apply electrical currents to specific parts of the body to help tissues heal faster while providing pain relief along the way. Let’s take a deeper look at this form of pain management to see what the buzz is all about.

How Does Microcurrent Therapy Work?

Also known as electrotherapy or microcurrent stimulation, microcurrent therapy uses electrical energy to help reduce pain, repair tissue, strengthen muscles, promote bone growth, and more. But how exactly does it work?

Believe it or not, your body is a conductor of electricity that produces an electrical charge of its own. Cells conduct electrical currents to communicate with one another, and your nervous system uses electricity to send signals throughout your body and brain. These signals allow us to move, think, and feel.

When your body suffers from an injury, this necessary signaling is disrupted or hindered. Without the proper signals between cells, your body can’t operate efficiently.

Microcurrent therapy aims to restore the electromagnetic communication between cells in order to promote healing and provide relief from muscle pain or joint pain. Additionally, microcurrent therapy is used in spas for its anti-aging properties to contour, tone, and firm aging skin, often on the face.

Using microcurrent therapy to increase cellular communication helps stimulate your body’s production of ATP, or adenosine triphosphate, in the injured tissue. ATP is the body’s primary source of energy that allows cellular interactions to take place. Microcurrent therapy works to increase ATP production by as much as 500% in damaged tissue — an increase that can help with the recovery process.

Microcurrent Therapy vs. Transcutaneous Electrical Nerve Stimulation

Microcurrent therapy is often confused with a different form of electrical therapy known as transcutaneous electrical nerve stimulation, or TENS for short. While TENS uses mild shocks that you can feel under the skin, microcurrent therapy uses electrical currents that are extremely weak, so you won’t feel a thing. TENS offers short-term relief from pain and inflammation, while microcurrent therapy offers long-term relief and healing properties.

What Conditions Can Be Treated With Microcurrent Therapy?

Microcurrent treatment has the ability to treat a wide variety of issues, but it is often used to treat nerve and muscle pain, or reduce scar tissue and inflammation due to the following conditions.

  • Fibromyalgia
  • Myofascial pain
  • Arthritis
  • Carpal tunnel
  • Sprains
  • ​Concussions
  • Bell’s Palsy
  • Headaches
  • Burns
  • Asthma
  • Irritable bowel syndrome
  • Low back pain
  • Disc injuries

How Is Microcurrent Therapy Administered?

The microcurrent therapy application process is simple. First, a therapist applies a moistened towel or self-adhesive electrodes to the affected area. Then he or she sets frequencies on the microcurrent device that correlate with the condition being treated. This process is referred to as frequency-specific microcurrent therapy, as the frequencies will change depending on what the injury is and where it is on the body.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Once the therapy is applied to the skin, electric currents will act as a stimulator to help repair damaged tissue and provide pain relief. Be sure you’re well-hydrated before receiving microcurrent treatment in any form, as this further promotes electrical stimulation. Your cells are composed largely of water, and well-hydrated cells will better conduct the electrical current with one another.

If you’re receiving a microcurrent facial, two metal prongs will mildly shock the face in specific locations. Though this process may sound intense, it’s both safe and FDA-approved.

Is Microcurrent Stimulation Painful?

Treatment with microcurrent stimulation is a noninvasive, injection-free procedure that’s generally painless. The electrical currents used to treat injuries are administered in doses so low that the patient rarely feels them. The only effects you may notice include a warming sensation, tingling, or softening of affected tissues.

How Long Do the Effects Last?

The effects of microcurrent therapy, including pain relief, can last for several days or longer depending on the injury being treated. For acute injuries, lasting pain relief can be achieved, though multiple sessions of therapy may be necessary.

The Benefits of Microcurrent Therapy

As you may have guessed, microcurrent therapy can be used to treat many things. From sports injuries to wounds to sagging skin, it’s a healthy form of therapy with lasting benefits. Microcurrent therapy can:

  • Reduce neck, joint, hip, and back pain
  • Heal tendons
  • Reduce muscular degeneration
  • Lessen headaches
  • Improve symptoms of diseases like arthritis or fibromyalgia
  • Tone the skin and promote collagen production

The Risks and Side Effects of Microcurrent Therapy

A medical professional applies electrode pads to a patients knee for microcurrent therapy

The risks that come from microcurrent therapy only apply to those who have pacemakers, implanted pumps, uncontrollable seizures, or women who are pregnant.

While low-level electrical currents aren’t dangerous, they can interfere with the body’s electrical signals in those who already suffer from conditions that affect the body’s electrical system, such as epilepsy or multiple sclerosis. Speak with your doctor or a licensed physical therapist before utilizing microcurrent therapy to determine whether it’s right for you.

How Much Does Microcurrent Therapy Cost?

While microcurrent therapy is often covered by your insurance and used in conjunction with other recovery aides, you can also seek this form of therapy on your own. Whether you’re seeking pain relief or simply want a microcurrent facial, microcurrent therapy can cost anywhere from $250 to $500. This depends largely on where you go (some cities such as Los Angeles or New York City will charge higher prices) and what you wish to treat.

Professional Treatment Versus At-Home Devices

If shelling out hundreds of dollars for microcurrent therapy isn’t your cup of tea, at-home devices are available for the price of one or two professional sessions. While these devices are available in abundance for your face, you can also find others that treat your body as well, though these may be more expensive.

And don’t expect the results to come immediately should you choose to purchase your own device. You may need to administer the therapy consistently for 60 days or more before seeing any results should you choose at-home treatment — these personal devices are often weaker than the devices used during professional treatment.

Practical Pain Management With Microcurrent Therapy

Various therapies seek to provide pain relief and healing in some form or another. From pain medications to invasive surgeries, there is much we can do to alleviate injury and pain. Fortunately, treatment options such as microcurrent therapy can provide non-invasive relief and healing.

While administering electrical currents to your body in an effort to promote nerve stimulation may sound intimidating, this lesser-known form of therapy has been used for decades without fail. If you find yourself suffering from muscle pain, nerve pain, or damage beneath the surface, take some time to determine if microcurrent therapy is right for you.

Reading time: 5 min

Whether you had too much coffee too late in the day or your mind is racing with thoughts, we all struggle with restless sleep from time to time. But, what happens when your sleep always feels restless, no matter what you do?

This could be a sign that something else is the culprit. Specifically, certain sleep disorders could unknowingly be causing your sleep problems and disrupting your ability to sleep well. If you’re suffering from restless sleep, here’s a look at the most common reasons people have sleep issues, plus what you can do to improve your sleep quality to get a good night’s sleep every night.

The Dangers of Restless Sleep

Restless sleep is characterized by frequent sleep disruptions throughout the night. When a person is constantly tossing and turning, as well as waking frequently, their sleep can be classified as restless. One of the greatest dangers of restless sleep is that it leads to sleep deprivation, which contributes to a host of additional problems.

For one, sleep deprivation causes severe fatigue that can slow a person’s reaction time. When a person can’t react quickly to changes in their environment, they’re more likely to get into an accident or hurt themselves. In fact, The National Highway Traffic Safety Administration estimates that fatigue leads to 100,000 car crashes and 1,550 crash-related deaths per year in the United States.

Restless sleep also leads to excessive daytime sleepiness that impairs a person’s functioning at work, which can further endanger their safety and compromise their quality of life. Aside from sleep deprivation, another dangerous side effect of chronic restless sleep is that it can lead to an over-reliance on sleep medicine.

A few signs that you’re taking too much medicine for sleep include: using sleeping pills to treat anxiety, taking extra doses of sleeping pills, and taking a second pill after waking in the middle of the night. While sleep aids can be helpful in certain situations, becoming dependent on them can further disrupt your body’s ability to sleep and function normally.

Restless Sleep and Sleep Disorders

When you’re experiencing restless sleep, the first thing to consider is a sleep disorder. Many people who suffer from lack of sleep have sleep disorders without even knowing that a medical condition is causing their distress. That’s why it’s important to be aware of the disorders that contribute to trouble sleeping and to understand how they can interfere with your ability to get quality sleep.

Restless Legs Syndrome

Restless legs syndrome is one of the most common sleep disorders that can cause sleep disturbances. Also known as RLS, restless legs syndrome is characterized by uncomfortable sensations in the legs. This can include cramping, twitching, or even tingling feelings that cause the sleeper to move in order to relieve the discomfort.

These feelings persist throughout the night, distracting the person sleeping and making it hard to stay still and fall asleep. Restless legs syndrome also tends to wake people once they’ve fallen asleep, making it hard to maintain sufficient sleep throughout the night.

Narcolepsy

Narcolepsy is another sleep disorder that’s often associated with restless sleep. While people with narcolepsy tend to feel rested after waking up, they usually feel the urge to fall asleep again shortly after. This extreme urge to sleep can strike a person in the middle of any activity, including talking or driving. Narcolepsy is a neurological disorder that disrupts a person’s sleep-wake cycle, or circadian rhythm.

In addition to experiencing overwhelming sleep attacks throughout the day, a person with narcolepsy may also experience cataplexy: a sudden loss in muscle tone that causes a person to collapse. While it sounds scary, it’s quite similar to the paralysis that all people experience during REM sleep.

Narcolepsy can also cause sleep paralysis, in which a person is unable to move when entering or leaving REM sleep. Sleep paralysis is when a person is conscious and knows they’re awake, yet they’re unable to move.

Obstructive Sleep Apnea

There are three main types of sleep apnea: obstructive sleep apnea, central sleep apnea, and mixed sleep apnea. Obstructive sleep apnea is the most common type of sleep apnea and is when a person stops sleeping periodically throughout the night. This occurs because their airway is too tight or floppy for the breath to flow smoothly from the mouth and nose into the lungs.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

These disruptions to the person’s breathing most commonly cause snoring but can also lead a person to wake during the night gasping for air. This causes restless sleep because a person may wake multiple times during the night due to airway obstruction. These frequent disruptions can lead to forgetfulness, daytime drowsiness, poor sleep quality, and irritability throughout the day.

Rapid Eye Movement Sleep Behavior Disorder

Rapid eye movement sleep behavior disorder (RBD) is a sleep disorder that occurs during REM sleep, which is the dream phase. Instead of staying still like most people during dreaming, a person with RBD will act out their dreams as if they’re awake, says the National Sleep Foundation.

In some instances, this can involve tossing and turning, thrashing, sleep talking, hitting, or even shouting. More extreme cases involve people getting up out of bed, sleep walking, and engaging in other activities — all while still asleep.

It’s important to understand that rapid eye movement sleep behavior disorder usually happens when a person is dreaming vividly. When these dreams are frightening or unusual, the person suffering from RBD may scare themselves or their partner. This can lead to restless sleep because a person may wake themselves by moving or walking about, or their partner may wake them if they’re engaging in violent behavior.

Lifestyle Changes to Improve Sleep Hygiene

Suffering from sleep problems can be a major detriment to your quality of life, but there is hope. Using a sleep tracker is one of the best ways to understand everything about your sleep patterns, since many issues can arise without your knowledge — especially if you don’t sleep with a partner. Even people who suffer from narcolepsy can improve their sleep hygiene by following a consistent sleep schedule and adhering to the following healthy daily habits.

Establish a Bedtime Routine

When you do the same thing every night before bed, your body begins to associate these activities with feeling tired and getting rest. These activities should include relaxing activities like reading, stretching, or listening to music. Similarly, it’s important to only use the bedroom for sleep and relaxation — working on the computer while in your bed can associate the space with the need to be alert.

Avoid Stimulants That Keep You Awake

Most people understand that drinking coffee late into the night can disrupt their sleep. But sleep can also be disrupted by things like drinking alcohol, exercising, and napping too close to bedtime. All of these things can make you more alert when it’s time to get some shuteye, increasing the chances of waking during the night.

Try Melatonin

You can also improve your sleep quality by adding more sleep supplements to your daily regimen. For example, supplementing with melatonin may help with REM sleep behavior disorder. Melatonin has fewer side effects than chemical sleeping pills, and it can offer nearly the same benefits. Since melatonin is a naturally occurring hormone, taking more melatonin can help you sleep better throughout the night.

In addition to supporting a more regular sleep wake cycle, melatonin also regulates body temperature, blood pressure, and hormone levels. Specifically, research says that melatonin “binds to receptors in the brain to help reduce nerve activity. In the eyes, it can help reduce dopamine levels, a hormone that helps you stay awake.”

The greatest benefit of melatonin for people with restless sleep is that it can help a person stay asleep. This is primarily due to the reduction of dopamine and nerve activity, which can keep a person alert late into the night.

Improving Sleep Quality for More Restful Nights

Spending an entire night in restless sleep isn’t fun for anyone. In fact, people who have chronically restless sleep are more likely to suffer from sleep deprivation, which can lead to a host of challenges and dangers.

Restless sleep may or may not be caused by a sleep disorder such as restless leg syndrome, RBD, sleep apnea, or narcolepsy. Taking a look at your sleep habits and overall sleep hygiene can help you understand where you’re missing out on sleep — and how you can catch up.

Reading time: 5 min

Whether it’s getting more protein, losing weight, or boosting lean muscle mass, there are many reasons why people choose low-carb diets like the Paleolithic (paleo) and ketogenic (keto) diets. If your goal is to decrease carbohydrates and sugar while increasing healthy fat and protein intake, you may be considering paleo or keto. Curious about the differences between these popular diets?

Both paleo and ketogenic diets aim to boost healthy eating habits. However, they each have different rules, restrictions, and philosophies. Whether you’re new to these diets or you just need a refresher, here’s what you should know about keto vs. paleo — and how each low-carb regimen can work for you.

Paleo vs. Keto

The ketogenic diet and the paleo diet have a number of things in common. For one, both diets drastically reduce carbohydrate intake. This includes most grains and starches, including wheat, barley, rice, and potatoes. At the same time, both diets call for an increase in high-quality whole foods, like veggies and greens.

Legumes are also restricted on both the keto and paleo diet — this includes beans and peanuts. Both keto and paleo restrict highly processed foods, as well as those containing refined sugars. This means that most diet foods, like processed protein bars or low-fat sodas, are off the table.

So what can followers of paleo and keto enjoy? The main components of both these diets are healthy foods like meat, fish, eggs, non-starchy vegetables, leafy greens, and healthy oils from nuts and seeds, though some restrictions apply.

For example, ketogenic diet followers don’t eat starchy vegetables or root vegetables like sweet potatoes, carrots, or parsnips. And while paleo allows for nearly all fruits in moderation, ketogenic followers eliminate all fruits except small portions of berries. Keto also places an emphasis on butter, cream, and unprocessed cheese. This is one of the key differences when exploring keto vs. paleo: Dairy is prolific in the keto diet while paleo followers are strict about avoiding it.

Weight loss is the primary benefit of both these diets, especially for those who struggle with weight gain or diabetes. As explained by Harvard endocrinologist and author Dr. David Ludwig, carb restriction stabilizes blood sugar levels and reduces insulin, which is a core driver of weight gain.

“By lowering insulin levels, fewer calories from the meal may get stored in fat cells, leaving more to fuel metabolism and feed the brain. As a result, you may feel fuller longer after eating,” Ludwig says.

Ludwig also found that low-carb diets help people burn more calories and lose more weight than following a low-fat diet alone. In contrast to the high-carb diets that are common in the western world, low-carb diet plans work to restore the body to its natural state.

What Is the Paleo Diet?

The paleo diet refers to the Paleolithic era when early humans got their dinner by foraging for wild plants and stalking giant mammoths. This was long before cooking and agriculture transformed the way we eat. It refers to the time when cavemen only had access to food they could find in the great outdoors. Processed foods, dairy products, and refined sugars were nonexistent.

Cavemen and early hunter-gatherers also relied heavily on an array of wild plants and vegetables. (Their plant-focused diet may have contributed to their survival.) Like paleobiologist Amanda Henry explains, hunting for meat wasn’t the only way Paleolithic humans found nutrients.

In fact, different cultures from around the world ate a rainbow of food groups from the earth depending on where they lived and what was accessible nearby. Today, people who want to accurately reflect the diets of early humans must eat not only grass-fed meat but also a wide variety of nuts, seeds, veggies, and fruit. Maple syrup and natural sweeteners like stevia are also accepted on the paleo diet, as these can be found in nature.

Health Benefits of the Paleo Diet

 

Following a paleo meal plan has many benefits, including accelerated weight loss, decreased waist circumference, reduced blood pressure, and improved cholesterol. Paleolithic eating habits may also support relief from certain conditions, such as epilepsy and cognitive decline. People who suffer from anxiety, brain fog, and other mental illnesses may also stand to gain from starting a caveman diet. Proponents of the diet have also said that it helps with type 2 diabetes.

Nutritional psychologist Georgia Ede explains that she’s seen significant improvements in patients’ mental health outcomes after they switched to a paleo-style diet. Achieving mental clarity and reducing anxiety are common side effects of making paleo-inspired food choices.

There are many reasons why paleo diets play a role in mental health. On one hand, paleo diets eliminate gluten, which can cause inflammatory reactions in certain people. Gluten intolerances have also been linked in schizophrenia, autism, and bipolar disorder, Ede says.

Paleo diets may also improve mental health because they’re low in refined carbohydrates, which can drive up inflammation, oxidative stress, and hormonal imbalance — all conditions that destabilize the activity of mood-regulating neurotransmitters like serotonin, dopamine, and GABA.

The paleo diet also emphasizes an active lifestyle, much like our ancestors would have had while foraging for food. Exercising daily and staying properly hydrated are two key lifestyle components of the paleo diet that can greatly improve long-term health. The best way to work out on the paleo diet is to get off the treadmill and get out into the great outdoors. Rather than pushing yourself to the point of exhaustion, the paleo diet stresses a healthy balance between training and recovery.

What Is the Ketogenic Diet?

 

The ketogenic diet is focused on accelerating ketosis, which is when there aren’t enough carbs in the body for energizing the cells. This high-fat diet causes the body to produce ketones, which encourage the body to rely on fat stores for energy instead of carbs. In addition to making you more energized, ketosis can improve mood and reduce hunger symptoms to keep you fuller for longer.

The keto diet depends on healthy fats to induce this process, so it’s important to up your intake of foods like grass-fed butter, ghee, flax seeds, fatty fish, eggs, and whole-fat yogurt. It’s also important to add avocado oil, coconut oil, and olive oil to your diet.

The high-fat keto diet has strict rules for carb intake, capping the limit at 50 grams of carbohydrates per day. Breaking this down, you’ll want 60-75% of your calories to come from fat and 15-30% of your calories from protein.

One word of caution is that the keto diet eliminates grains and most fruits, which may cause a reduction in folic acid. Since this is an important nutrient for cell generation and recovery, it would be smart to add a multivitamin with folic acid to your diet.

Also be aware that, when first switching to keto, it may take about a week for your body to adjust. The body likely won’t go into ketosis for 3-4 days, during which you may feel tired and sluggish. Carb withdrawal can also cause mental fog, headaches, and cramps — a combination that’s often referred to as the keto flu. Getting over this hump, however, is key to kicking your body into ketosis and reaping its full benefits.

Health Benefits of The Ketogenic Diet

Low-carb diets like keto are effective at targeting reductions in visceral fat, which lodges around the organs. Reducing visceral fat is important because it’s associated with inflammation and insulin resistance.

It’s clear that the keto diet can help you lose weight, but can it help with other health challenges? The low-carb, high-fat keto diet has been proven to support a reduction in seizures in people with certain types of epilepsy. Specifically, keto diets have been used for years to help children with disorders like Lennox-Gastaut syndrome or Rett syndrome, both of which cause seizures.

Some people have claimed that the diet can help reduce acne, improve heart health, and regulate hormone imbalances, though more evidence is needed to support such claims. Regardless, switching to keto may help people live longer, healthier lives. Since the fat-burning nature of the keto diet will likely lead to weight loss, it can support overall health by reducing obesity-related ailments like diabetes, heart disease, and certain cancers in individuals who were previously overweight.

How to Choose Between Keto vs. Paleo

Both the keto and paleo diets may reduce weight loss and obesity-related diseases. And while both these diets follow a low-carb meal plan, they each have their own set of science-backed philosophies.

The keto diet emphasizes healthy fat intake with foods like grass-fed and full-fat dairy, nuts, eggs, and lean meats to induce a state of ketosis, which burns fat and boosts energy. Paleo also supports the consumption of healthy fats, but allows for all fruits, vegetables, and meats while restricting dairy products. If you’re interested in losing weight and pursuing a healthier overall diet, here’s the bottom line: both keto and paleo may provide the results you’re looking for.

Reading time: 6 min

The nervous system is a fascinating and complex network of nerves, synapses, and organs that work together to transmit signals throughout your body. It’s one system in a larger environment, and it’s responsible for everything from movement to unconscious acts like adjusting your vision and maintaining your resting heart rate.

Want to learn more about the parasympathetic nervous system and why it matters for your health? We’ve put together this scientific guide to help you understand how the system works. Plus, you’ll learn what it means for your health and how you can use tools to track metrics and monitor your wellbeing.

What Is the Parasympathetic Nervous System?

Understanding the parasympathetic nervous system (PSNS) can be complicated because it’s part of a much larger network of bodily processes. Essentially, the parasympathetic nervous system, also known as the “rest and digest” system controls bodily functions associated with the body at rest and after digestion. To fully understand this system, you need an overview of the network it works within.

Your body is a complex network of cells and structures that come together to drive movement, create thoughts, and sense the world around you. Within these complex networks, the nervous system plays a key role. The nervous system consists of nerves and neurons that work to transmit signals from one part of the body to another. It’s the process that underlies everything from waving your hand to coughing to standing up.

The nervous system consists of two parts, the peripheral nervous system (PNS) and the central nervous system (CNS). The brain, spinal cord, and nerves make up the central nervous system while neurons and clusters of neurons — known as ganglia — are the key actors in the peripheral nervous system.

Since these systems are so complex, scientists have broken them down even further. The peripheral nervous system is divided into two sections: the autonomic nervous system and the somatic nervous system.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

For our discussion of the parasympathetic nervous system, we’ll focus on the functions of the autonomic nervous system, which controls involuntary smooth muscles and glands. The parasympathetic nervous system is one of two subsections of the autonomic nervous system. The autonomic nervous system is responsible for things you can’t voluntarily change at a moment’s notice, including your heart rate and digestive functions.

Now that you have a basic grasp of the entire nervous system, we’ll dive into the functions and actors of the parasympathetic nervous system.

Functions of the Parasympathetic Nervous System

The parasympathetic nervous system is one of two divisions of the autonomic nervous system. The other division of the autonomic nervous system is the sympathetic nervous system. That system is responsible for the body’s fight or flight response.

On the other hand, the PSNS controls unconscious movements and signals that occur during a variety of activities. The parasympathetic nervous system is what’s working behind the scenes when you cry, when you digest and process foods, and when you start drooling over a delicious meal. It’s responsible for everything from urination and defecation to sexual arousal.

It works to constrict certain eye muscles to help improve vision at close range, and it makes it easier for you to use the bathroom. It works like this: M3 receptors — which help to slacken smooth muscle — are stimulated to relax the urethra, which makes it easier to urinate. In scientific terms, parasympathetic stimulation signals peristalsis in the ureters — an involuntary constriction that relaxes urination muscles, creating a wave-like effect that moves the contents of your bladder toward the urethra. In essence, the PSNS is responsible for the urge to use the bathroom. Some of the main functions of the parasympathetic nervous system are that it:

  • Stimulates salivation
  • Constricts pupils
  • Contracts the bladder
  • Inhibits the production of adrenaline
  • Decreases heart rate
  • Stimulates digestion
  • Relaxes sphincter muscles
  • Dilates bronchial tubes

The parasympathetic nervous system essentially works behind the scenes to keep things running as smoothly as possible. It’s a system you may not think much about, but it is a key part of most of your daily routines.

Actors Within the Parasympathetic Nervous System

The parasympathetic nervous system operates mainly within the lungs, heart, bladder, and stomach. It sends signals using parasympathetic nerves — special nerve systems that are rooted in the spinal cord — and cranial nerves, which are rooted in the brain. The system triggers bodily functions when signaled by parasympathetic nerves throughout the body. The main parasympathetic nerves are autonomic or visceral nerves that work with two neurons to carry signals to the target organ.

Cranial nerves are also among the key actors in the PSNS. The body has a total of 12 cranial nerves that are rooted in the nuclei of the brain and spread out to vital organs. Because of this structure, the PSNS is often said to have a craniosacral flow — a flow of information from the brain to other organs.

The cranial nerves carry signals from the brain to ganglia — a structure that consists of cell bodies including neurons. These ganglia comprise four parasympathetic synapses including the ciliary ganglion, which control pupil dilation, and the pterygopalatine ganglion, which produce tears and mucus. The other two synapses include the otic ganglion and the submandibular ganglion, which control salivation.

These signals are transmitted through nerve fibers known as preganglionic fibers. After the ganglion processes the message, the PSNS sends the singnal to the relevant organ, using fibers known as postganglionic fibers. The nerve fibers also contain neurons that are involved in the transmission process and known respectively as preganglionic neurons and postganglionic neurons.

Think of the parasympathetic ganglia like train stations — a train arrives with a passenger holding a briefcase of information and departs to deliver that briefcase to another location. You can also think of it as a post office. A letter or message comes through the postal depot and is then transmitted out to its destination.

In the PSNS, there are 4 main nerve types that perform most actions.

  • Oculomotor nerve: This cranial nerve is located in the eye and is responsible for constricting the pupil. This makes the pupil smaller, bringing in less light. It also contracts the ciliary muscle — an eye muscle responsible for vision — helping to improve vision at close distances.
  • Facial nerve: The facial nerve is responsible for controlling the salivary glands and glands in the mouth and nose. This parasympathetic nerve also controls the lacrimal glands, which produce tears.
  • Glossopharyngeal nerve: This nerve delivers signals to the salivary glands known as parotids glands.
  • Spinal nerves: Spinal nerves are made of desiccated pathways from the spine to the heart that help manage overall heart control.
  • Vagus nerve: The vagus nerve originates in vagal nuclei that are responsible for an incredible amount of body functions. According to StatPearls, the vagus nerve acts on “the viscera of the abdomen and thorax” and is especially important because it “carries 75% of all parasympathetic fibers”. The nerve delivers messages to a host of organs from the bladder and stomach in the gastrointestinal tract to the kidneys, liver, and sexual organs.

Why the PSNS Matters

The parasympathetic system is incredibly important when it comes to normal bodily functions. If something within the system breaks down, you may develop issues including digestive problems and heart problems. The latter is particularly important since the PSNS plays an important role in heart health that we haven’t covered yet.

The PSNS includes special heart receptors known as muscarinic receptors. The function of these receptors is to prevent stimulation from the other autonomic system — the sympathetic nervous system, which triggers the fight or flight response in stressful situations. Research shows a correlation between sympathetic nervous system activity and negative outcomes in patients with heart failure.

On the other hand, parasympathetic nervous system activation may help to protect heart health. That’s because these systems work in parallel. While the sympathetic nervous system can trigger increased heart rate and fight or flight responses, the PSNS tends to relax and constrict body responses.

Additional research shows the parasympathetic nervous system may help protect heart health by regulating blood pressure and heart rate. This system sends signals for vasodilation — or widening — of the blood vessels, helping to lower high blood pressure.

The PSNS may also help regulate the resting heart rate. A normal resting heart rate is between 60 and 100 beats per minute. If you’re not sure what your resting heart rate is, you can easily calculate it at home.

Use a health tracker like Biostrap’s wristband to get accurate readings of your resting heart rate. Alternatively, you can take your heart rate by placing two fingers on your wrist and counting the number of beats for one minute. If your resting heart rate is abnormal, it may be a sign that something within the parasympathetic nervous system isn’t working properly.

The PSNS and Your Health: How to Monitor Metrics

The parasympathetic nervous system is a key component of overall health. It’s responsible for unconscious movements that are vital to digestion, vision, and heart health. Monitoring your health can help you identify underlying issues that may affect your PSNS and other important health networks.

The Biostrap App and wearables are a great way to track and monitor your health. From monitoring your resting heart rate and oxygen saturation levels to tracking your sleep habits, the tool offers unrivaled insights into your health.

Did we miss anything?

If you have any questions, suggestions or topic requests, please reach out.