Reading time: 3 min

Ever feel like your body’s sending you mixed signals? One moment you’re wound up tighter than a spring, and the next, you’re too drained to move. It’s like being stuck in traffic with your emotions honking loudly, trying to signal you through the fog. Understanding whether you’re dealing with emotional or physical stress isn’t just about putting a name to your pain; it’s about finding the right tools in your self-care kit to deal with it. Distinguishing between these two types of stress is crucial in order to manage them effectively.

Emotional or physical stress

Picture this: Emotional stress is like having a bunch of browser tabs open in your brain—constantly loading, never quite settling. It stems from worries, anxieties, and the mental burdens we carry. Physical stress, on the other hand, is the body’s way of saying, “Hey, remember that high-intensity interval training session at the gym? I’m still dealing with that.”

Why does the distinction matter? Because the remedy for a mind cluttered with worries is different from the cure for muscles aching from overexertion. Recognizing the source of your stress is step one on the path to managing it.

How to tell them apart

Feeling stuck in a mental loop, ruminating over past conversations or future anxieties? That’s your cue for emotional stress. On the flip side, if your body feels like it’s been through a wringer after a physically demanding day, you’re looking at physical stress. The key to differentiation lies in self-awareness—listening to what your body and mind are telling you. Here’re are six actionable tips for managing stress – both physical and emotional.

Caught in a thought tornado? Go for a walk.

When your mind is a maze of worries, a change of scenery can work wonders. Walking isn’t just good for your body; it’s a balm for the mind, too. It’s about hitting the refresh button on your thoughts and letting nature’s calm infiltrate your mental chaos.

Feeling down? Hit the gym.

If emotional stress has you feeling low, exercise can be your elevator. It’s not just about staying fit; it’s about releasing endorphins, those feel-good hormones that act like natural painkillers and mood lifters. Whether it’s a dance class, a quick jog, or yoga, moving your body can help clear the emotional clutter.

In a Funk? Get some sun.

Never underestimate the power of a sunny day. Sunlight is nature’s mood enhancer, boosting your serotonin levels and battling the blues. So, if you’re feeling down, step outside and let the sun’s rays lift your spirits. Even a brief lunch break under the sky can make a difference.

Muscles screaming after a workout? Prioritize recovery.

If physical stress has left your muscles shouting objections, it’s time to listen. Rest is not laziness; it’s an essential part of the recovery process. Combine it with strategies like a warm bath, sauna (if you can), gentle stretching, or massage, and you’re not just treating your body; you’re thanking it.

Overwhelmed by emotions? Write It down.

Sometimes, the act of transferring your thoughts from mind to paper can help untangle them. Journaling is a therapeutic way to face emotional stress head-on. It’s about giving your feelings a place to rest outside of your head.

Breathe through it: The power of mindful breathing.

Whether it’s emotional anxiety or the aftermath of a physical strain, mindful breathing can be a bridge to calm. Deep, deliberate breaths signal your body that it’s safe to relax, turning down the volume on stress.

Why it all matters

Understanding the nature of your stress is like having the right key for the lock. It empowers you to choose the most effective strategies for relief, ensuring that you’re not just throwing solutions at the problem and hoping something sticks. It’s about targeted, effective self-care that acknowledges the complexity of human experience—recognizing that we are both mind and body, intertwined.

Deciphering whether your stress is emotional or physical is more than a mental exercise; it’s a critical step toward holistic well-being. By tuning into the signals your body and mind are sending, you can tailor your self-care practices to meet your needs effectively. Whether it’s through movement, mindfulness, or simply soaking up some sun, the path to managing stress starts with understanding its roots. Remember, in the journey toward wellness, every step, every breath, and every moment of mindfulness counts.

Reading time: 3 min

At Biostrap, we’re thrilled to announce that our cutting-edge wearable technology, Kairos, is now eligible for purchase using Health Savings Account (HSA) or Flexible Spending Account (FSA). Our partnership with Truemed makes it possible for you to enjoy significant tax advantages.

Whether you want to access high-fidelity PPG data to track sleep, biometrics, and nervous system state, or interested in superior data to help build AI-powered predictive health models for physical and mental health monitoring, it’s just become a lot more affordable. Grab the 3- or 5-Pack Biostrap Kairos Evaluation Kit using pre-tax dollars.

What does it mean? 

When a wearable technology device like Kairos is “covered by HSA/FSA funds,” it means that you can use the funds from your HSA or FSA to purchase the device. Both HSAs and FSAs are tax-advantaged accounts that you can contribute to and use to pay for qualified medical expenses. Here’s a brief explanation of each:

Health Savings Account (HSA):

  • An HSA is a tax-advantaged savings account available for individuals with high-deductible health plans.
  • Contributions to an HSA are tax-deductible, and the funds can be withdrawn tax-free if used for qualified medical expenses.
  • HSA funds can be used for a wide range of medical expenses, including prescription medications, doctor visits, certain medical devices, and now the Biostrap Kairos.

Flexible Spending Account (FSA):

  • An FSA is another tax-advantaged account that allows employees to set aside a portion of their pre-tax earnings for qualified medical expenses.
  • FSA funds must be used within the plan year or a grace period, and they can cover eligible medical expenses such as co-pays, deductibles, certain medical products, and now the Biostrap Kairos.

Using HSA/FSA funds provides a financial benefit as contributions to these accounts are made with pre-tax dollars, effectively reducing the overall cost of the device.

Here are six reasons to use your FSA/HSA dollars for Kairos

  1. Tax savings

When it comes to your health, every investment matters. By using pre-tax dollars, you not only maximize your tax savings but also make a smart and affordable investment toward your health monitoring efforts.

  1. Affordable access to advanced health technology

Kairos isn’t just a sleep tracker; it’s a comprehensive health companion that helps you better understand your autonomic nervous system. With FSA/HSA coverage, you can now grab the 3- or 5-Pack Biostrap Kairos Evaluation Kit without breaking the bank. Experience the power of physiological biometrics, sleep analysis, and the innovative Spot Check feature that provides real-time insights into your autonomic nervous system balance – effectively a window into optimizing your mental health resilience.

  1. Superior data quality for remote patient monitoring

For healthcare professionals, Kairos offers an unparalleled tool for remote patient monitoring. Keep track of patients’ biometrics, sleep patterns, autonomic nervous system state, and overall health with advanced remote monitoring. This not only helps to improve patient outcomes but also allows for early intervention and personalized care.

  1. Optimizing training for peak performance

Unlock the full potential of your team’s training programs with Kairos. Track individual and team progress, identify areas for improvement, and tailor training regimens based on personalized data. The advanced analytics provided by Kairos empower coaches to optimize training strategies for increased performance.

  1. AI-driven insights for unprecedented precision

Kairos and the accompanying Vital Science app are built to be a platform for innovation. With Kairos’ capability to gather extensive high-fidelity PPG data, it serves as a valuable tool for developing new AI-driven algorithms. Contribute to the future of health technology by using Kairos and our Waveshape feature to refine and develop algorithms that can provide unprecedented insights into personalized medicine, diagnostics and health monitoring.

  1. Proactive health management made easy

Stay ahead of potential health issues with Kairos. Its high-fidelity data capture and personalized insights empower you to be proactive in managing your health or the health of those you choose to monitor remotely. By using your HSA or FSA funds, you make a smart investment in a device that goes beyond traditional health tracking, offering a holistic approach to well-being.

Now is the time to make the smart choice for your health. Use your HSA or FSA funds to invest in Kairos and experience the future of personalized health technology. Maximize your tax savings, embrace proactive health management, and join a community that prioritizes collective well-being.

To purchase using your FSA/HSA funds, select the 3- or 5-Pack Kairos Evaluation Kit, go to checkout, scroll down to “Payment”, past “Delivery” and “Shipping method”, and check ​​”TrueMed – Pay with HSA/FSA”. After clicking “Pay now”, you will be redirected to TrueMed – Pay with HSA/FSA to complete your purchase securely.

Reading time: 2 min

Did you know that using advanced features extracted from PPG has been instrumental for our partners? It allowed them to achieve life-changing discoveries from predicting Inflammatory Bowel Disease flare-ups and Sickle cell anemic vaso-occlusive crises to monitoring emotional/mental health issues, hypercapnia, and beyond.

What were they using? Biostrap Waveshape! It offers a revolutionary approach to harnessing Photoplethysmography (PPG) features for deep learning and AI-driven predictions in healthcare. While heart rate and heart rate variability are essential metrics, Waveshape takes it a step further, providing tools to discover new AI-powered biometrics that can monitor both physiological and psychological health conditions.

Understanding PPG features

PPG involves shining an LED through the skin to measure light absorption changes with each heartbeat. This variation helps calculate heart rate and other cardiovascular metrics. The PPG waveform visually represents this data, and within it lie specific markers called PPG features or fiducial points. These markers, such as amplitude or the location of the dicrotic notch, determine the PPG’s shape, enabling the computation of various health biomarkers.

What are fiducial points?

Fiducial points in the context of PPG are specific markers or distinctive features within the PPG waveform. These points play a crucial role in pinpointing events or characteristics in the waveform, such as the peak of a heartbeat or the location of the dicrotic notch.

Extracting fiducial points is essential for accurate analysis of physiological signals, enabling the computation of various health biomarkers like heart rate variability, blood oxygen levels, and more complex metrics. These reference markers serve as anchors for interpreting the intricate data collected through PPG, contributing to the development of precise and insightful health predictions.

Overcoming challenges

Extracting fiducial points from PPG, however, is a complex process that demands expert-level skills. Our experience, spanning over six years, has been pivotal in overcoming the challenges associated with this intricate process. Hence, we ensure accuracy, reducing the margin for errors in the extraction process.

Addressing commercial wearable shortcomings

Waveshape stands out against commercial wearables’ limitations. Subpar signal quality and data processing, restricted metrics, and lack of customization are common issues. Waveshape, however, offers superior high-fidelity PPG signals, direct access to validated PPG features and fiducial points, a fully customizable experience, and seamless integration for efficient data extraction.

Building AI-powered predictive health models

Waveshape empowers users with superior data and expert-level feature extraction from PPG, enhancing the accuracy and insightfulness of predictive health models. These advanced PPG features open doors to a wealth of nuanced information embedded within the waveform. Such fiducial points may be systematically utilized to create a comprehensive understanding of cardiovascular dynamics.

Thus, with high-quality and transparent data, the transition from reactive to proactive healthcare may become possible, preventing health exacerbations and managing emotional and mental health through innovative biometrics.

Precision medicine elevated

In the quest for precision medicine, Waveshape sets a new standard. Its superior data measurement and cutting-edge PPG features enable healthcare professionals to deliver personalized care that maximizes patient outcomes. This transition from one-size-fits-all solutions to tailored treatments represents a significant leap in healthcare.

Are you intrigued by the possibilities of Waveshape?

Explore how you can join our visionary partners in revolutionizing remote health monitoring and precision medicine. Click on the “Partner with us button” on our main page, fill out the form, and a member of our team will reach out to you.

Reading time: 3 min

The advent of digital health and research has has opened up new frontiers in healthcare delivery, diagnosis, treatment, and disease prevention. One central element that fuels this digital revolution is data. Data has become the lifeblood of digital health and research, driving insights, innovation, and improved patient outcomes. However, the potential of data can only be fully realized when there is transparency.

What is data transparency

Data transparency refers to the ability of all stakeholders to have access to and understand the data that is being used. It is about making the data freely available and clear for everyone to see, without hidden agendas or misuse. This transparency is critical to foster trust, enable collaboration, and ensure accountability in the digital health landscape.

They can see where the data comes from, how it is processed, and how it is used. This transparency empowers everyone to make informed decisions, enhances collaboration, and fosters trust.

The importance of data transparency

The value of data transparency in digital health and research cannot be overstated. It forms the foundation of trust between patients, healthcare providers, and researchers. When there is transparency, patients are more likely to share their data, knowing that it will be used responsibly and for their benefit. This trust is crucial for the success of digital health initiatives.

Data transparency also leads to better research outcomes. When researchers have access to transparent data, they can conduct more robust analyses, develop novel algorithms, make accurate predictions, and develop innovative solutions and even discover new biomarkers.

That’s why transparency is one of the core values of Biostrap in how it provides access to data that’s captured by its wearable, Kairos. This transparency enables collaboration, as researchers can share their data and findings, leading to greater scientific progress.

Moreover, data transparency can help to ensure accountability in the digital health space. It allows for the tracking and auditing of data, ensuring that it is used responsibly and ethically.

This accountability can help to prevent data breaches and misuse, protecting the privacy and rights of patients.

The missing link: data transparency in wearables

Wearables, including fitness trackers, smartwatches, and health monitors, collect a wealth of data about our bodies and lifestyles. This data can provide valuable insights into our health and well-being, enabling personalized healthcare and proactive disease prevention.

However, there is a missing link that threatens to undermine their value: data transparency. Many wearable companies operate in a black box, with little transparency about how they collect, process, and use the data.

This lack of transparency raises concerns about the privacy, security, and ethical use of the data.

That’s where Biostrap’s team wanted to bridge the gap and be a fully transparent digital health solution. At Biostrap, we believe that transparency is key to building trust and fostering collaboration in the digital health space.

Hence, we are committed to providing our enterprise clients with clear, understandable information about how the data is collected, processed, and used. It also gives them control over the data, allowing them to decide who can access it and for what purpose.

It can also enable collaboration among researchers, leading to better research outcomes. Especially so because Biostrap also collaborates with researchers, sharing anonymized data to support health research.

Challenges to data transparency in digital health and research

While the benefits of data transparency are clear, there are several challenges to achieving it in digital health and research. These challenges include privacy concerns, data security risks, and the complexity of health data.

Privacy is a major concern in the digital health space. Many individuals are wary of sharing their health data, fearing that it could be misused or fall into the wrong hands. To address this concern, there is a need for strong privacy protections and clear communication about how the data will be used.

Data security is another significant challenge. With the increasing volume of health data being collected, the risk of data breaches and cyberattacks is high. This risk can be mitigated through robust data security measures and regular audits.

To address these challenges, Biostrap has implemented high-quality data protection measures, built a secure ecosystem that’s fully HIPAA-compliant, and ensures that user and patient data is safe and can never be accessed by a third party.

Reach out to our team to discuss how Biostrap can help get your research project off the ground, or how we can help best implement a successful remote health monitoring program in your practice.

Click on the “Partner with us” button at the top of THIS page to book a meeting with a team member.

Reading time: 2 min

In the pursuit of a happier, healthier life, the journey from mental health to mental fitness is a transformational shift. Mental health is about managing and addressing issues, while mental fitness represents a proactive approach to building resilience, emotional strength, and overall well-being. It’s a path that passes through self-awareness, empowerment, and personalized strategies, and it can be greatly aided by the integration of AI and wearable data.

Understanding the journey

The journey from mental health to mental fitness begins with understanding the fundamental difference between the two. Mental health often focuses on addressing challenges such as stress, anxiety, or depression when they arise. While this is essential and valuable, mental fitness takes a broader approach. It involves actively cultivating a mindset and lifestyle that promote emotional and psychological well-being, making it easier to navigate life’s challenges.

How AI and wearable data play a proactive role in mental fitness

The role of AI fueled by biometric analysis can act as a guide, helping individuals recognize their mental health challenges and encouraging self-awareness. AI can analyze vast amounts of health data collected from wearable devices, such as the Biostrap Kairos, providing insights into emotional triggers and patterns of distress. Armed with this knowledge, individuals can develop a deeper understanding of themselves and their mental well-being.

Building Self-Awareness

Self-awareness is the cornerstone of mental fitness. It’s the ability to recognize one’s emotions, thoughts, and behavioral patterns. AI-powered wearable technology can assist in building self-awareness by continuously monitoring physiological responses to emotional fluctuations. Over time, users gain a clearer picture of their triggers and reactions, empowering them to make more informed decisions.

Tracking Progress

As individuals embark on their journey toward mental fitness, it’s crucial to track progress. Wearable technology plays an important role here, offering real-time data on various aspects of well-being. The Biostrap Kairos device and the Vital Science app for example, offers a Spot Check feature that provides insight into a user’s autonomic nervous system balance. This data allows users to understand to what extent their body is in the mode of parasympathetic (rest-and-digest) or sympathetic (fight-or-flight).

Additionally, monitoring biometrics such as heart rate, sleep patterns, and activity levels, users can visualize their improvements, set achievable goals, and celebrate milestones along the way.

Cultivating mindfulness

The Vital Science app offers guided mindfulness practices as part of the Meditation Plus feature. It doesn’t only helps users incorporate a mindfulness into their lifestyle routine, but each mindfulness session can be tracked using the Biostrap Kairos.

With that, users can gain insights into how their heart rate, heart rate variability, and respiratory rate shift during meditation. These practices teach individuals to stay present, manage stress, and respond to triggers with composure. Mindfulness is a cornerstone of mental fitness.

How Biostrap can help

At Biostrap, we are committed to empowering individuals on their journey from mental health to mental fitness. Our cutting-edge digital health technology combines the precision of AI with the convenience of a wearable to provide you with the tools and insights you need to build resilience, foster emotional strength, and proactively manage your mental well-being.

Our technology continuously monitors your physiological data and offers real-time feedback. It helps you understand your triggers, manage stress, optimize your sleep, and build mindfulness practices into your daily life.

Your well-being matters, and we are here to empower you every step of the way. Start your journey today, and let’s build mental fitness together.

Reading time: 4 min

In the quest for better health and well-being, there has been a growing focus on tapping into the parasympathetic nervous system. This emphasis on relaxation, mindfulness, and stress reduction is undoubtedly valuable, but it’s crucial to recognize a fundamental truth: the autonomic nervous system (ANS) is never just in one mode. It’s in a perpetual state of flux, maintaining a continuous tug-of-war between its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS).

The misconception of pure parasympathetic dominance

In the pursuit of relaxation and stress reduction, there’s a common misconception that achieving a state of pure PNS dominance is the ultimate goal. While the PNS is indeed responsible for “rest and digest” activities, it’s essential to remember that the ANS is not an on-off switch, but rather a dial — a dynamic system that adjusts to your body’s needs in real-time.

Often referred to as the body’s autopilot, the ANS regulates countless bodily functions without us even realizing it, from heart rate and digestion to respiratory rate and pupil dilation. While it might be tempting to think of the ANS as a binary switch, with one side turning off as the other activates, the reality is far more nuanced.

Our bodies are engaged in a constant tug of war, with the SNS and PNS in a dynamic manner, adjusting their influence according to our physiological and psychological needs. In certain situations, being more dominant in one mode is more beneficial, but remember, pure dominance in either is rare. This continuous interplay between the sympathetic and parasympathetic branches is essential for our overall health and well-being.

The art of balance: when dominance matters

Imagine a lion chasing you through the savannah; your body’s SNS kicks into high gear. Your heart rate soars, your muscles tense, and your senses become razor-sharp – all to help you escape danger and survive. This is a classic example of the SNS taking charge when needed, ensuring your survival in critical moments.

Conversely, during moments of calm and relaxation, the PNS steps in. It slows your heart rate, aids in digestion, and promotes healing and regeneration. When you’re enjoying a peaceful night’s sleep, engaging in mindful meditation, or simply lounging on the couch, the PNS is the star player, ensuring your body rests, recharges, and recovers.

The modern SNS dominance epidemic

The sympathetic nervous system is designed to respond to immediate threats and challenges. However, the relentless demands of the modern world have led many individuals to remain stuck in this heightened state of arousal, even when no immediate danger is present. The result? An imbalance in the autonomic nervous system that can have profound consequences on physical and mental health.

Here’s how SNS dominance affects us:

Chronic stress

Modern life is rife with stressors, from work pressures to financial concerns and constant connectivity through technology. This chronic stress keeps the SNS in overdrive, leading to increased heart rate, shallow breathing, and elevated cortisol levels – all of which can have detrimental effects on health.

Sleep disturbances

SNS dominance often spills into nighttime hours, making it difficult to unwind and achieve restorative sleep. Sleep quality suffers as a result, leaving individuals feeling fatigued and irritable.

Digestive issues

The SNS is not conducive to proper digestion, leading to problems like indigestion, irritable bowel syndrome (IBS), and other gastrointestinal discomforts.

Mental health impact

Persistent SNS activation can contribute to anxiety disorders, depression, and an overall sense of unease.

Reduced immunity

Over time, a continually dominant SNS can weaken the immune system, making individuals more susceptible to illnesses and infections.

Quantifying the autonomic nervous system balance with Biostrap

Understanding this delicate balance within the ANS can seem complex, but wearable technology like the Biostrap Kairos makes it accessible and actionable. Biostrap provides a comprehensive view of your ANS activity, allowing you to fine-tune your lifestyle choices for better health and well-being.

Biostrap’s newest device, Kairos, matched with the Vital Science app, empowers users with real-time insight into how much that ANS dial is turned toward PNS or SNS in at any given time of the day.

nervous system

 

Kairos provides:

Real-time spot check: Kairos offers an assessment of your ANS balance, giving you a dynamic view of your body’s state at any point during the day.

Lifestyle insights: Kairos can reveal how certain lifestyle interventions, such as exercise, meditation, or dietary choices, impact your ANS balance.

Actionable guidance: With this data-driven insight, you can make informed decisions about your daily routines, optimizing your activities to achieve better ANS balance.

In a world where the focus on relaxation and parasympathetic nervous system activation is growing, Biostrap provides the tools to help you navigate the delicate balance of your autonomic nervous system. It empowers you to recognize and respond to your body’s needs, whether it’s a burst of energy for a challenging task or a deep sense of relaxation for restorative sleep. Remember, it’s not about switching a switch on and off, it’s about learning to toggle the dial back and forth of your ANS for a healthier, more optimal, and more balanced life.

Reading time: 3 min

First responders play a crucial role in safeguarding our communities, often facing high-stress situations that can take a toll on their mental and physical well-being. Wearable technology has provided great value in various industries for tracking health metrics, such as heart rate, sleep patterns, and physical activity. Its potential in supporting first responders is undeniable in terms of helping to enhance safety and performance, including the benefits of tracking fatigue, sleep, and recovery.

One metric that has received considerable attention in the context of first responders is heart rate variability (HRV).

What is heart rate variability (HRV)

HRV, the variation in time intervals between consecutive heartbeats. It is a measure of the balance between the sympathetic (fight or flight) and parasympathetic (rest and digest) branches of the autonomic nervous system and has proven to be a reliable indicator of an individual’s stress levels, emotional well-being, and overall health.

Utilizing wearables, such as the Biostrap devices, equipped with HRV monitoring capabilities can provide real-time data, helping first responders understand their physiological responses during high-stress situations.

Wearable Technology for Measuring HRV

Wearable technology, such as the Biostrap Kairos, EVO, and Ethos can continuously measure HRV throughout the day and night. These devices use either ECG or photoplethysmography (PPG) technology. The latter to measure the changes in blood volume in the microvascular bed of tissue, providing a non-invasive method for HRV assessment.

Advantages of Wearable HRV Monitoring

Measuring HRV offers several advantages for first responders:

  • Continuous, real-time monitoring provides a comprehensive picture of an individual’s HRV throughout the day, allowing for more accurate assessments of stress and fatigue levels.
  • Non-invasive and unobtrusive technology enables first responders to wear the devices during their daily activities and while asleep without hindrance.
  • Data collected from wearable devices can be easily accessed and analyzed, allowing for personalized recommendations and interventions.

Why HRV Matters for First Responders

By monitoring HRV, first responders can gain insights into their autonomic nervous system’s functioning, enabling them to identify early signs of stress and take appropriate action. This information empowers them to implement self-regulation techniques, such as deep breathing exercises and mindfulness, to manage stress and maintain their performance under pressure.

The impact fatigue

Fatigue is a significant challenge first responders face. Numerous studies have established a link between the demanding nature of their work and increased risk of this condition. Literally has shown that over 50 percent of firefighter deaths are due to stress and exhaustion.

Additionally, studies have established that chronic fatigue might reduce HRV. By harnessing the power of wearable technology, we can gather valuable insights into their physiological responses, enabling proactive measures to mitigate the risk and impact fatigue.

Sleep tracking

Fatigue resulting from inadequate sleep is a significant concern for first responders, as it can impair cognitive abilities, decision-making, and reaction times, jeopardizing both their safety and the safety of those they serve. Wearable technology with sleep tracking capabilities allows first responders to monitor their sleep patterns and ensure they are getting the rest they need.

Sleep tracking can provide valuable data on sleep quality, duration, and disruptions, helping first responders identify potential sleep disorders or patterns that may impact their performance

Armed with this knowledge, they can implement strategies to improve sleep hygiene, such as maintaining a consistent sleep schedule, creating a conducive sleep environment, and adopting relaxation techniques before bedtime. These measures can significantly enhance their alertness and cognitive functioning, reducing the risk of fatigue-related challenges on duty.

Optimizing performance and safety

By leveraging HRV and sleep tracking, Biostrap enables first responders to take proactive steps toward optimizing their performance and safety. Continuous monitoring of HRV can aid in identifying patterns that may indicate the need for extended rest or recovery periods, preventing burnout and promoting overall well-being. Additionally, sleep tracking empowers first responders to prioritize and improve their sleep, ensuring they are well-rested and mentally sharp during critical moments.

Furthermore, the data collected through wearable technology can be analyzed on a broader scale to identify trends across teams. This information can be used to develop evidence-based protocols and training programs aimed at promoting resilience, reducing stress-related incidents, and improving overall performance.

More research needed but we’re at a good start

More research is needed to better understand the relationship between HRV and job-specific stressors faced by first responders, as well as to develop targeted interventions and strategies based on HRV data.

However, wearable technology, like the Biostrap devices, that are equipped with HRV and sleep tracking capabilities hold tremendous potential in supporting our first responders. By providing valuable insights into their physiological responses, these devices offer an opportunity to manage stress, reduce the risk of fatigue, and optimize performance and safety.

As we continue to explore innovative solutions, it is essential to prioritize the well-being of our first responders and equip them with the tools they need to excel in their noble service to society.

Reading time: 3 min

Calisthenics may remind some of PE classes from a foregone era, but like all fitness trends they cycle around again.

Trendy workout formats like Crossfit, bootcamp classes, Strong by Zumba, and others are fully or partially based on calisthenics. Even Pilates, barre, power yoga, and dance fitness classes contain exercises that may be described as calisthenics.

What Are Calisthenics? Is It Just Another Name For Bodyweight Training?

The term Calisthenics refers to exercises that don’t require weights, machines, or equipment. People also frequently refer to calisthenics as body-weight training.

Most classic Calisthenics are a form of resistance or strength training exercises. Popular bodyweight calisthenics include squats, pushups, lunges, crunches, and planks. Some high-intensity calisthenics raise the heart rate and trainers and boot camp instructors often arrange them into circuits for an interval-based or steady state cardio workout. In addition to the previous examples, calisthenics that fit this category include jumping jacks, burpees, and mountain climbers.

Many prefer calisthenics and bodyweight training because they don’t need expensive equipment to get an effective workout.

Pros And Cons Of Bodyweight Calisthenic Workouts

Some people base their fitness routine around bodyweight training and calisthenics. Others prefer to supplement their weight lifting workouts with calisthenics. You don’t have to choose one approach exclusively, however there are some key benefits and disadvantages to bodyweight training.

Benefits Of Calisthenics Based Workouts

  • You use your own body or gravity as resistance so you don’t need additional equipment.
  • Most calisthenics can be made more or less challenging by adding equipment such as resistance bands. For example, people training to do pull-ups can use a heavy resistance band to make the pull-up a little easier while they build their strength.
  • Many calisthenics require only a small amount of space so people can do them in hotel rooms, dorm rooms, and other crowded spaces.
  • You can adapt calisthenics to many training strategies. For example, many trainers leaders arrange bodyweight exercises into circuits for High Intensity Interval Training (HIIT) workouts. Others may arrange them into a classic bootcamp style workout.
  • They offer a fun, excuse-proof way to workout. Some people mix it up through apps, workout card games, or following their favorite YouTube trainer. The options are limited only by your fitness and creativity.

Disadvantages of Calisthenic Based Workouts

  • Like any exercise, you need to use good form for a safe and effective workout. If a bodyweight exercise is too challenging, it may not be possible to modify certain exercises.
  • Weight lifting is so effective because you can progressively increase the resistance as your body adapts. For some bodyweight exercises, once you master it you have to switch to more challenging variations or add extra resistance to see more gains.
  • People who use step counting fitness trackers often feel disappointed when they work up a sweat but see a very low step count. Many effective strength exercises like squats, pullups and pushups do not register as steps for most trackers.

Calisthenics And Your Biometrics

Calisthenics affect your biometrics in different ways depending on how they fit into your routine. Vigorous circuit workouts using calisthenics will affect your Heart Rate Variability (HRV) readings as they involve anaerobic training. You may need to allow yourself an active recovery day after a vigorous calisthenics circuit session. As you get fitter, you may find that this style of program causes your and HRV to trend downwards over time.

As mentioned, people who wear popular step counting devices sometimes feel cheated by how few steps they accumulate during a calisthenics workout. Fortunately, exercise classification functions evolved and Biostrap can recognize, classify and track over 100 exercises including many popular calisthenics. This function also may help you refine your technique in response to the feedback.

Finally, many use heart rate training to pace their bodyweight workouts. Your working heart rate may prompt you to ease up or work harder depending on conditions that day. Monitoring your heart rate also helps you better time your recovery intervals.

Calisthenics are ideal whenever you want or need an efficient, no-equipment workout. They are a classic in bootcamps, gyms, PE classes, and boutique studios throughout the world.

Sources And Resources

Drop and Give Me 20! – A research study on the effectiveness of bootcamp style fitness trends by the American Council on Exercise (ACE) By John Porcari, Ph.D., Kirsten Hendrickson, B.S., and Carl Foster, Ph.D., with Mark Anders

The Seven Minute Workout – The Well, New York Times, by Gretchen Reynolds

Reading time: 3 min

Your resting heart rate is not a static number. It changes over time and day-to-day depending on your health, lifestyle, and environmental conditions.

These changes to your resting heart rate provide a peek into what is going on with your body. These three surprising things that alter your resting heart rate provide insight into how changes in your health affect this easily measured biometric.

Measuring Your Resting Heart Rate

The American Heart Association recommends that you check your resting heart rate first thing in the morning before you get out of bed. For best results, choose a morning when you wake up naturally since many of us are startled by the sound of the alarm. If that isn’t possible, try relaxing for a few minutes before you take your resting heart rate.

If you took your resting heart rate each morning, you would find that some mornings it is higher and others lower. This will vary depending on whether you are fighting illness, slept well, and where your hormonal cycle is that day (especially if you are female). Many of the same things that affect Heart Rate Variability (HRV) also may change your resting heart rate.

Please note, the information in this post is not a substitute for medical or professional advice. It is simply general information.

Three Surprising Things That Change Your Resting Heart Rate

1. Dehydration

Fitness enthusiasts often use heart rate monitors to track their working heart rate. Competitive and recreational runners may use heart rate training to ensure they work at the right intensity for each workout within their training program.

However, the benefits go deeper. An increased heart rate is also one of the symptoms of dehydration. This also can happen at rest especially on a hot day. WebMD lists increased heart rate as a warning sign of dehydration. According to WebMD, the increase in RHR also indicates the degree of dehydration:

“Normally, when you have been lying down and then stand up, there is a small drop in blood pressure for a few seconds. The heart rate speeds up, and blood pressure goes back to normal. However, when there is not enough fluid in the blood because of dehydration and the heart rate speeds up, not enough blood is getting to the  brain. The brain senses this condition. The heart beats faster, and if you are dehydrated, you feel dizzy and faint after standing up.” (Source Dehydration in Adults, Web MD)

Tip or Application: Stay hydrated both at rest and during exercise to maintain your normal heart rate. Be aware that excessive hydration can lead to a rare and dangerous condition sometimes known as “water intoxication.” Always practice moderation!

2. Changes in Health

Your resting heart rate (RHR) provides a barometer into your health and hormone balance. It reflects the efficiency of your cardiovascular system much like your HRV reading. Keep in mind that your genetics affect your resting heart rate so some people tend to run a little faster while others typically have a slower RHR. However, within your normal range, the following factors can alter your RHR:

  • Pregnancy – pregnancy typically increases RHR very early. Sometimes women who measure their Basal Body Temperature (BBT) while trying to conceive also take their resting pulse. Often they find both their core body temperature and their heart rate increased before a home pregnancy test confirmed the result.
  • Thyroid conditions – People with underactive, or hypothyroid, often find their RHR decreased. On the other hand, those with overactive, or hyperthyroid, find their RHR increases.
  • Other hormone changes – Both of the previous factors involve a change in hormone balance, other hormone changes may also affect RHR.
  • Weight gain or loss – Sometimes when people gain weight their RHR increases and weight loss decreases it. Of course, improvement in cardiovascular fitness also result in a lower resting heart rate (at the lower end of your normal range).

Tip or Application: Regularly monitor your RHR and HRV. If you notice changes that last longer than a few days consider whether there may be any changes to your health or hormones. If you think so, be sure to schedule an appointment with your doctor.

3. Overtraining or Stress

We previously covered how stress can lower your HRV, it also can raise your RHR. The same applies to training hard without allowing adequate recovery from your workouts. Some athletes track both their HRV and RHR to gauge their recovery. Inadequate sleep can also hinder your ability to recover from physical and mental stress. This also results in decreased HRV readings and increased RHR.

Tip or Application: Use your Biostrap to tracks trends in both your RHR and HRV measures. Consider taking active recovery days or rest if your readings indicate that you need rest.

Your biometrics offer insight into the state of your health. Devices like Biostrap make it easier to track trends in key biometrics including resting heart rate, blood oxygen saturation levels, resting heart rate, and working heart rate. It is easier than ever to monitor these metics and to use this information to live your healthiest life.

Sources and Resources

Reading time: 4 min

Fasting is an age-old practice that is gaining speed in our modern-day world.

From intermittent fasting that can take place every few days or once in a while, to something that is a lifestyle, such as the one-meal-a-day, or OMAD, diet, fasting can take many forms.

Many formerly obese individual credit fasting for extreme weight loss. Others have said it improves overall health and wellness. And while the research backing up fasting regularly is mixed on all sides of the vein, the fact remains that when you don’t eat, things start to happen inside your body that affects your autonomic nervous system, and in turn, your heart rate variability.

Here is what happens to your body when you fast over a long period of time, and as a result, what role those changes play on your heart rate variability.

Your body will break down glycogen

In the beginning of your fast, your body will convert glycogen (sugar) into energy. This is entirely normal following a meal because it’s basically digestion (and your autonomic nervous system at its finest).  However, after about six hours, when you have “officially” begun you fast, your glycogen stores will begin to deplete, and you will become hungry.

Effect on HRV

Because of HRV levels being highly dependent on stress levels, in these beginning stages, your HRV could go high or low depending on your approach to the fast. If you are feeling stressed about being hungry, your HRV will likely be low. However, if you are feeling confident about the results of the fast, and even have the desired outcome, you are likely going to find that your HRV is high, indicating that you are handling the stress on your body quite well.

Your blood glucose level will rise

This may seem wrong because wouldn’t your body lose sugar if it doesn’t have the stores to break it down? And wouldn’t that mean that your blood sugar would go down?

You’d think so, but what actually happens when you fast, is that insulin levels start to drop, triggering a surge of hormones like including noradrenaline and growth hormone to fight against low blood sugar. This, in turn, concentrates the blood with sugar that it pulled from stored sugar that is usually in the liver.

Effect on HRV

According to research, high blood glucose concentration is associated with higher parasympathetic, but lower sympathetic CAM. This means that your body is under more stress to perform its normal functions of the nervous system. If you were to measure these using biometrics, you would likely find your HRV to be on the lower level.

Ketosis will begin

When your body doesn’t have the energy sources to break down new glycogen, it starts to starve and begin the hunt for other things to convert into energy. It will start breaking down fat into fatty acids in order to use them for energy rather than carbs. This is when those looking to use fasting for weight loss begin to see results.

However, due to the fact that the brain cannot use broken down fat for fuel, it turns to ketone bodies for energy. This works for a small time because ketone bodies can’t replace glucose. But after a few days, the ketone bodies build up and a volatile substance called acetone begins to form, lowering the pH of the blood. When this happens, a condition called acidosis develop and lead to coma or even death.

Effect on HRV

At this point — usually around the 48-hour mark —  your body is under stress as it searches for energy sources to survive.  Due to this, your HRV will lower. In fact, a study that took 16 young healthy female volunteers, and had them fast for 48 hours, found that parasympathetic withdrawal was induced with simultaneous sympathetic activation. These findings lead researchers to conclude that the changes in the women’s nervous systems appeared to reflect stress.

However, if your body is used to fasting, or if you have prepared yourself mentally and physically for the fast, the change may not be as significant as it could be otherwise.

If you do notice a significant drop in HRV and begin to feel considerably physical and mental stress, it might be best to abandon the fast at this point.

You’ll have cognitive function impairment

If you continue your fast, your body will be in the process of ketosis and quite possibly acidosis. During these stages, the body starts to break down protein to release amino acids that can convert into glucose. This is done to fuel your brain and suppress hunger.

For those who use fasting as a weight-loss measure, this is the next step that the body takes, and many experts — specifically as it relates to the keto diet —  say that ketosis is not entirely harmful. However, due to the strain on your brain, you may lose some simple brain functions that help you remember things, and carry out simple tasks.

Effect on HRV

The strain on many of your cognitive functions, and the continuing decline in your HRV levels will make it more difficult for your autonomic nervous system to work the way it needs to. You will be less alert and therefore unable to respond well to stressful situations

Fasting isn’t all bad …

The above may seem quite terrible and can be if taken to an extreme level. However, if you use fasting intermittently, your body will likely not have many or any of the negative side effects including those related to HRV.

Do your research on the right fasting approach for your health goals. And as always, check with a medical professional to make sure your body is able to handle the effects — whatever they may be — of a fasting regimen.

Reading time: 5 min

My experience as an athlete

As a health coach and fitness trainer and being 53, I place a huge importance on the optimization of my health. I also love to challenge what I call conventional stupidity approach to health, fitness and life. I do things a bit differently than most Triathletes and Marathoners and Personal Trainers. I fundamentally believe we need to rest more, reduce chronic stress, and connect more with what is going on in our bodies.

I use a wide range of subjective measures in relation to my health and fitness. Subjective measures such as how I feel, my energy levels, my bowel movements, my mood, my ability to think and make decisions, and of course how I feel when I am in the gym, the pool, the track or on the bike. Some people place a lot of importance on Objective metrics and numbers and tend to negate the Subjective measures.

I think it is very important to have a good balance between both.

I recently found this to be important when I started looking at biometrics. I was looking at my RHR, O2 Saturation, Respiration and HRV all from a nocturnal measurement lens. I found there was a trend for my HRV to be quite low and I mean low 32, 41, 35, and it did not vary much regardless of if I had had a 5 hr training day or a rest day. It also did not vary based on my RHR, or how I felt. I was very confused. I was worried, I was starting to think something was wrong. There was a huge disconnect between the subjective rating I would give myself for my state and the objective numbers provided by the HRV tool I was using.

So I tried several HRV devices/applications and tools and they all seemed to show the same result. I was desperate for a deeper understanding of what was going on.

My experience with Biostrap

So why is this so important? Well I am a serious AG athlete. Last year I raced in the 70.3 Ironman World Championships and I train about 13 hrs a week and I am serious about my sport. This was important to me. I also feel that recovery is one of the key pillars of health and fitness.

5ba48dd8e460730759184bc2 andre2

The last thing I want to do is cause further stress to my body that would impact my ability to recover, ie doing a solid training session when not fully recovered.

I started looking at a system for biometrics that to me appeared to be more focussed on HRV than simple fitness tracking, it also provided the ability to do a 2 minute biometric scan. I decided to give this a trial. It is called Biostrap.

I had been hearing a lot about the fact that nocturnal HRV reading for elite athletes could be not effective due to a phenomenon called “parasympathetic saturation

My understanding is that this has been reported in high level ultra-marathoners, triathletes and endurance athletes that are more susceptible to it in the supine position simply because you’re in a more rested or relaxed state where our heart is not being challenged to overcome gravity, to pump blood upwards and so forth. When you already have a very low RHR lying down makes it even worse.

Andrew Flatt PhD, CSCS

Andrew is a highly qualified practitioner in this field and writes fantastic content around biometrics. Flatt explains in more detail:

“Parasympathetic saturation, the results of would be having decreased heart rate variability despite having a very low resting heart rate, which is counterintuitive because typically, the lower your resting heart rate, the higher your heart rate variability is. There tends to be an inverse relationship there. But what’s happening kind of physiologically is that the acetylcholine receptors on the heart that respond to vagal stimulation, the vagus nerve is going to release acetylcholine which will bind to the muscarinic cholinergic receptors on the heart, and that tends to slow heart rate down”

So after reading all of this one morning before training I decided to conduct a Sitting biometric scan.

“Kiviniemi et al. (2007) provides a very thorough explanation of why HRV might be better measured in a standing position as opposed to seated or supine. Essentially, HRV is susceptible to saturation of the parasympathetic nervous system in subjects with low heart rates”

Yes, this is me at 36-41 RHR.  I got excited maybe I found the reason why my Nocturnal HRV was so low. He further explains:

“Mourout et al (2004) saw decreased HRV in overtrained athletes compared to not overtrained athletes in the supine position. Similar results were found when HRV was measured after 60 degree tilt. The non-OT group always had higher HRV in the standing position and saw greater reactivity to the postural change. Therefore, pick a position and stick to it 100% of the time for your values to be meaningful. Switching positions from day to day will provide skewed data.”

Endurance athletes and athletes with low resting heart rates (yes that’s me) are probably better off measuring HRV in a standing position. We understand that when an elite athlete has a very low RHR then they are likely to be in a state of parasympathetic saturation. Andrew Flatt Explains this as follows:

“This is when vagal HRV markers (e.g., lnRMSSD) are low despite a low resting heart rate. This has to do with excess acetylcholine within the myocardium that maintains inhibitory actions on the SA node, and thus limits the typical arrhythmia observed from respiration. See below”

“There are several potential explanations for the decrease in HRV with increasing parasympathetic effect. If with increasing blood pressure there is higher-frequency vagal discharge and inspiratory suppression is maintained,18 23 then there must be persistent parasympathetic effect during inspiration despite the suppression of vagal nerve discharge. In in vitro preparations, the dose-response curve to acetylcholine has a rapidly rising portion and at higher concentrations is flat,24 25 displaying a simple saturation relationship. High-intensity vagal nerve discharges during expiration may release enough acetylcholine to result in saturation of the parasympathetic effect during expiration. If acetylcholine concentrations during expiration are high enough, the expected decline in acetylcholine concentrations in the region of the sinus node during inspiration may not be enough to significantly diminish the parasympathetic effect. Alternatively, it is possible that with increasing blood pressure, there is loss of phasic respiratory changes in vagal nerve discharges,26 resulting in a loss of phasic effect and a decrease in HRV. It is unclear which mechanism is operative in humans.”

 

Goldberger, J. J., Challapalli, S., Tung, R., Parker, M. A., & Kadish, A. H. (2001). Relationship of heart rate variability to parasympathetic effect. Circulation, 103(15), 1977-1983. http://circ.ahajournals.org/content/103/15/1977.full.html

So if you are using an HRV device, and you have a low RHR  maybe you should do a self check and consider are your Objective numbers from your HRV app lining up with the Subjective measures and, if not, consider using a device that allows you to do a sitting or standing biometric scan.

Did we miss anything?

If you have any questions, suggestions or topic requests, please reach out.