Reading time: 3 min

Ever feel like your body’s sending you mixed signals? One moment you’re wound up tighter than a spring, and the next, you’re too drained to move. It’s like being stuck in traffic with your emotions honking loudly, trying to signal you through the fog. Understanding whether you’re dealing with emotional or physical stress isn’t just about putting a name to your pain; it’s about finding the right tools in your self-care kit to deal with it. Distinguishing between these two types of stress is crucial in order to manage them effectively.

Emotional or physical stress

Picture this: Emotional stress is like having a bunch of browser tabs open in your brain—constantly loading, never quite settling. It stems from worries, anxieties, and the mental burdens we carry. Physical stress, on the other hand, is the body’s way of saying, “Hey, remember that high-intensity interval training session at the gym? I’m still dealing with that.”

Why does the distinction matter? Because the remedy for a mind cluttered with worries is different from the cure for muscles aching from overexertion. Recognizing the source of your stress is step one on the path to managing it.

How to tell them apart

Feeling stuck in a mental loop, ruminating over past conversations or future anxieties? That’s your cue for emotional stress. On the flip side, if your body feels like it’s been through a wringer after a physically demanding day, you’re looking at physical stress. The key to differentiation lies in self-awareness—listening to what your body and mind are telling you. Here’re are six actionable tips for managing stress – both physical and emotional.

Caught in a thought tornado? Go for a walk.

When your mind is a maze of worries, a change of scenery can work wonders. Walking isn’t just good for your body; it’s a balm for the mind, too. It’s about hitting the refresh button on your thoughts and letting nature’s calm infiltrate your mental chaos.

Feeling down? Hit the gym.

If emotional stress has you feeling low, exercise can be your elevator. It’s not just about staying fit; it’s about releasing endorphins, those feel-good hormones that act like natural painkillers and mood lifters. Whether it’s a dance class, a quick jog, or yoga, moving your body can help clear the emotional clutter.

In a Funk? Get some sun.

Never underestimate the power of a sunny day. Sunlight is nature’s mood enhancer, boosting your serotonin levels and battling the blues. So, if you’re feeling down, step outside and let the sun’s rays lift your spirits. Even a brief lunch break under the sky can make a difference.

Muscles screaming after a workout? Prioritize recovery.

If physical stress has left your muscles shouting objections, it’s time to listen. Rest is not laziness; it’s an essential part of the recovery process. Combine it with strategies like a warm bath, sauna (if you can), gentle stretching, or massage, and you’re not just treating your body; you’re thanking it.

Overwhelmed by emotions? Write It down.

Sometimes, the act of transferring your thoughts from mind to paper can help untangle them. Journaling is a therapeutic way to face emotional stress head-on. It’s about giving your feelings a place to rest outside of your head.

Breathe through it: The power of mindful breathing.

Whether it’s emotional anxiety or the aftermath of a physical strain, mindful breathing can be a bridge to calm. Deep, deliberate breaths signal your body that it’s safe to relax, turning down the volume on stress.

Why it all matters

Understanding the nature of your stress is like having the right key for the lock. It empowers you to choose the most effective strategies for relief, ensuring that you’re not just throwing solutions at the problem and hoping something sticks. It’s about targeted, effective self-care that acknowledges the complexity of human experience—recognizing that we are both mind and body, intertwined.

Deciphering whether your stress is emotional or physical is more than a mental exercise; it’s a critical step toward holistic well-being. By tuning into the signals your body and mind are sending, you can tailor your self-care practices to meet your needs effectively. Whether it’s through movement, mindfulness, or simply soaking up some sun, the path to managing stress starts with understanding its roots. Remember, in the journey toward wellness, every step, every breath, and every moment of mindfulness counts.

Reading time: 2 min

Sleep tracking has become an increasingly popular tool in our quest for better rest, recovery, and overall well-being. However, as beneficial as it can be, it also presents a double-edged sword. It’s easy to fall into the trap of chasing a “perfect” score, leading to unnecessary stress and anxiety. But there’s a way to find the golden path – shift your focus to a different approach: be curious.

Instead of fixating on nightly numbers, let curiosity guide you. Curiosity opens up a world of possibilities, inviting you to explore and understand your body’s rhythms and responses over time. When you see that your Biostrap Sleep Scores dip, instead of feeling disheartened, ask yourself the questions: “What did I do that may have caused this?” and “What can I do to bounce back?”

Moreover, challenge yourself with wonderment. What if I tried different strategies or routines? What if I experimented with new relaxation techniques or sleep interventions? Embracing curiosity allows you to approach sleep tracking as a journey of discovery, rather than a push for perfection.

Untangle complexity

The key lies in embracing the process of untangling the complexity of your sleep patterns and biometric changes over the long run. By analyzing long-term trends, you’ll unlock invaluable insights into your nervous system resilience and overall well-being. You’ll begin to understand how your body responds to different stressors, lifestyle factors, bedtime routines, and sleep interventions.

This deeper understanding may empower you to make informed adjustments that support better sleep, recovery, and performance. Whether it’s tweaking your bedtime routine, optimizing your sleep environment, or exploring new relaxation techniques, curiosity may fuel your journey toward holistic well-being.

Progress over perfection

It’s essential to remember that the goal isn’t achieving perfection—it’s about progress and resilience. By leading with a curious mindset, you’ll embrace the inherent fluctuations of your sleep patterns and recognize them as opportunities for growth.

A night of a low Sleep Score or a drop in your heart rate variability (HRV) will inevitable happen – it’s just part of life. However, think of them as moments for reflection. On the other hand, long-term trends paint a better picture of your overall health. So, take a step back, look at the bigger picture, and pay closer attention to how your data may deviate from your personal baseline. Then use those insights to pinpoint potential negative or positive adaptations that may call for a change in your habits.

In the end, it’s curiosity that propels us forward and helps us embrace self-discovery and transformation. Data from your Biostrap Kairos will help add some objective insights into your lifestyle choices and help you make measurable changes that you can track. Be it resting heart rate, heart rate variability, deep sleep or nocturnal movement, sleep tracking may give you the clues you need to make informed decisions over shooting darts in the dark.

Reading time: 3 min

Veterans’ lives manifest an intricate interplay of emotional and physical health due to the unique nature of their service experiences. Emotional well-being, informed by the psychological toll of deployments and combat scenarios, is a vital facet of veterans’ health. Physical health, encompassing issues stemming from combat injuries, post-service fitness, and overall vitality, is equally indispensable.

The synergy between these aspects is unmistakable. Their emotional and physical health require dedicated attention, and therein lies the pivotal role of Veteran’s Affairs organizations and institutions committed to fostering the well-being of those who have served our nation.

Health monitoring on an individual basis is becoming more popular; however, such organization play a key role in adequate interpretation of that data. Here’s how biometric monitoring with Biostrap can complement the work of organizations dedicated to veterans’ health and well-being.

Biometric monitoring of veterans

Biometric monitoring emerges as a game-changing tool for veterans striving to enhance their well-being. The Biostrap Kairos and Vital Science app offer a sophisticated platform for the continuous tracking of vital parameters, including heart rate, heart rate variability (HRV), respiratory rate and sleep parameters. This technology arms veterans with comprehensive insights into their health, facilitating an informed approach to addressing both physical and emotional concerns.

Heart rate

often reflective of stress levels and cardiovascular health, serves as a fundamental indicator for veterans to manage their well-being. Monitoring heart rate empowers veterans to discern the implications of stress and anxiety, enabling timely interventions such as relaxation techniques or physical activities to mitigate stress.

Heart rate variability

A measure of autonomic nervous system function, emerges as a potent tool to gauge resilience. Higher HRV is indicative of better health and adaptability, while diminished HRV may signal stress and reduced resilience. For veterans, HRV tracking illuminates their physiological response to stressors, allowing for proactive adjustments to enhance resilience.

Sleep parameters

Vital for physical and emotional recovery, sleep quality can now become tangible through Biostrap. Many veterans encounter sleep disturbances post-service, and the ability to monitor sleep patterns, disturbances, and overall sleep quality is a critical component in maintaining optimal mental health and cognitive functioning.

Nervous system balance

Imagine being able to visualize to what extent a veteran’s nervous system is in parasympathetic or sympathetic mode and what their stress levels are at any given point in time. In addition to that you can grasp how these parameters shift in response to certain interventions or events. This is where the Biostrap Spot Check feature comes into play, offering a unique and invaluable perspective on the state of the veteran’s nervous system.

The Biostrap Spot Check goes beyond conventional biometric monitoring. It provides real-time insights into the balance of an individual’s autonomic nervous system, stress index, HRV, and heart rate. All that through a simple three-minute scan using the Kairos wrist-worn device. With this feature, veterans and their healthcare providers can gain an unprecedented understanding of their physiological response to stressors and relaxation techniques.

Organizational involvement

The importance of Veteran’s Affairs organizations and institutions committed to veterans’ health and well-being cannot be overstated. These entities serve as the custodians of veterans’ welfare, guiding them toward a healthier, more fulfilling post-service life. There are several compelling reasons why organizational participation is indispensable:

Early intervention

Organizations are uniquely positioned to detect subtle biometric trends in veterans that may herald impending health issues. Regular health check-ins create opportunities for organizations to provide timely support, averting the progression of health concerns into more severe problems.

Holistic care

The spectrum of challenges faced by veterans extends from physical injuries to intricate mental health issues. Through the comprehensive monitoring of biometrics, organizations can adopt a more holistic approach to addressing veterans’ well-being, concurrently addressing both their physical and emotional health.

Accountability and support

Organizational engagement instills a sense of accountability in veterans. It conveys an unwavering commitment to their well-being and fosters an environment where veterans are motivated to take agency of their health, buoyed by the support of institutions dedicated to their welfare.

The Biostrap solution: innovative, scalable, convenient

Biostrap offers an innovative, convenient, and scalable ecosystem for the active involvement of Veteran’s Affairs organizations and institutions committed to veterans’ health and well-being. In this intricate landscape of veterans’ health, both emotional and physical well-being are inextricably linked, and the role of organizations in monitoring biometrics serves as a beacon of support and early intervention.

Reading time: 3 min

In an age where wearable technology has become an integral part of our daily lives, wearables have emerged as powerful tools for remote health monitoring. These devices, equipped with an array of sensors, can generate a staggering amount of data points, offering valuable insights into our well-being. However, for individuals, interpreting this wealth of data and making informed decisions can be a daunting task. This is where having their data monitored by an organization, led by healthcare professionals, can make all the difference in how individuals incorporate that data into their daily decision-making.

Additionally, these tools are increasingly becoming essential for organizations looking to monitor the well-being of their groups. Whether it’s a police department, first responders, a specific patient group, or an olympic team.

Advanced remote health monitoring

The beauty of modern wrist-worn wearables, such as the Biostrap Kairos, lies in their ability to gather an extensive range of health metrics. From heart rate and heart rate variability, to sleep patterns and activity levels, these devices provide an all-encompassing snapshot of one’s health. Yet, the sheer volume of data can be overwhelming for individuals attempting to navigate the intricacies of their well-being. This complexity often results in underutilized data and missed opportunities for improved health.

For individuals, the challenge is clear: how can they effectively utilize the multifaceted data generated by their wearables to make meaningful lifestyle choices? This is precisely where the idea of having their data monitored by an organization, with professionals who can interpret and guide them, becomes profoundly meaningful.

Precision in data interpretation

One of the primary advantages of using a Biostrap’s remote health monitoring solution is the precision in data interpretation. The Biostrap Kairos is equipped with cutting-edge sensors and technology that provide highly accurate health metrics, such as heart rate, HRV, sleep parameters, nervous system balance analysis, activity levels, and more. When organizations use Kairos, they can trust the data they receive, making it easier to make informed decisions.

Biostrap health monitoring platform offers real-time data analytics, enabling healthcare professionals to track trends, spot anomalies, and identify potential health concerns. This accuracy and immediacy in data interpretation can lead to early intervention, preventing health issues from worsening, and ultimately saving lives.

Personalized health recommendations

The modern concierge of remote health monitoring goes beyond just collecting data; it’s about transforming that data into actionable insights. Biostrap’s health monitoring platform uses advanced algorithms and artificial intelligence to generate personalized health recommendations for individuals, including optimal bed time and wake up time for best recovery.

By monitoring a person’s unique health data, the lead of the organization or healthcare professional can provide tailored guidance, including exercise routines, dietary suggestions, stress management techniques, and more. These recommendations are based on the individual’s specific health goals and existing health conditions, making them much more effective in promoting a healthier lifestyle.

Comprehensive health and wellness ecosystem

Biostrap’s remote health monitoring solution is not limited to basic health tracking. Biostrap’s team offers a comprehensive approach to ensure that the organization and its group members receive superb care and support, fostering a sense of well-being.

White-glove experience for organizations

Biostrap’s remote health monitoring solution aims to provide a white-glove experience for organizations. This means that Biostrap offers tailored support and services to ensure the organization’s needs are met.

Organizations will have access to dedicated account managers who will guide them through the setup and usage of the health monitoring platform. These professionals are there to answer questions, resolve issues, and ensure a smooth experience. Furthermore, Biostrap provides on-demand training for the organization’s staff, ensuring they can effectively use the platform and make the most of its features.

Biostrap’s wrist-worn wearable Kairos and health monitoring platform is the modern concierge of remote health monitoring. By choosing this solution, organizations and their group members can benefit from more accurate data interpretation, personalized health recommendations, and a white-glove experience that caters to their unique needs.

It not only enhances the well-being of the group members but also contributes to a culture of health and wellness within the organization.

Reading time: 3 min

Modern healthcare is seeing a transformative shift toward personalized medicine. This innovative approach aims to tailor interventions to suit the distinct genetic, lifestyle, and health parameters of individuals. At the forefront of this revolution are digital biomarkers, discernible indicators of biological processes, and wearable devices, like the Biostrap Kairos, that collect and analyze real-time health data. By harnessing the power of digital biomarkers, healthcare providers can gain valuable insights into patients’ conditions, enabling personalized treatment plans and improving overall patient outcomes.

What are Biomarkers and How are They Used Today?

Biomarkers, in the context of healthcare, refer to measurable biological indicators that can provide information about an individual’s health or disease status. Traditionally, biomarkers have been used for diagnostic purposes, helping clinicians identify the presence or absence of a particular condition. However, with advancements in technology and our understanding of human biology, biomarkers are now being utilized in a more nuanced and comprehensive manner.

In addition to their diagnostic utility, biomarkers are increasingly being employed to inform treatment decisions and monitor the effectiveness of interventions. One exciting development in this field is the use of digital biomarkers, which are captured through wearable devices or smartphones. These digital biomarkers include visual and auditory data, or physiological data, which can be analyzed to identify trends and subtle shifts in a patient’s health and response to therapy.

Personalizing treatment through digital biomarkers

One of the key advantages of digital biomarkers is their ability to match the right patients with the right treatments. By capturing health data trends over time, digital biomarkers can help determine if a treatment or intervention is suitable for a patient. This personalized approach to treatment has the potential to improve patient outcomes and reduce the burden of trial and error in finding the most effective interventions.

Patients with immunological disorders provide an excellent example of how digital biomarkers can enhance personalized care. Symptoms such as fatigue, pain, and depression associated with these conditions can significantly impact quality of life and vary over time.

By continuously monitoring a patient’s day-to-day experience through digital biomarkers, healthcare providers can identify responders and non-responders to treatment earlier, allowing for timely adjustments to care plans. This information enables healthcare providers to make more informed decisions about treatment, ensuring patients receive the most suitable interventions.

Predicting risk and improving quality of life

As digital biomarkers continue to evolve and gather more high-quality data, they have the potential to revolutionize patient care. While they currently serve as valuable monitoring tools, providing insights into general health and treatment response, their future applications are even more exciting.

AI-powered digital biomarkers could pave the way for risk assessments that predict future health events and enable proactive interventions.

For instance, Biostrap Kairos’ new nervous system analysis feature will be key to quantifying how much stress an individual is under at in real time. This visualization could help predict breakthrough events and allow healthcare providers to take preventive measures before they occur.

Precision medicine: from research to standard-of-care

Digital biomarkers have made significant strides in the realm of clinical research, where they help define specific patient populations and evaluate the potential benefits of investigational therapies. By leveraging data from diverse sources, these biomarkers inform decision-making in clinical pathways and lay the groundwork for real-world applications of new medications.

That’s exactly how the Children’s Hospital of Los Angeles has leveraged Biostrap’s raw PPG data to develop a new physiological biomarker to detect sickle cell pain crisis with patients.

As conversations around personalized care progress, it is crucial to develop algorithms based on unbiased and diverse data sets. By doing so, AI-powered digital biomarkers can facilitate personalized treatments and interventions for all patients, ultimately paving the way for precision medicine to become the standard-of-care.

The integration of biomarkers and digital technology is propelling modern medicine toward a future of personalized care. Through the analysis of visual and auditory digital biomarkers, clinicians can gain valuable insights into patients’ conditions, facilitating tailored treatment plans and improving overall patient outcomes.

As technology continues to advance and our understanding of biomarkers deepens, the potential for predicting risks, improving quality of life, and ultimately achieving precision medicine as standard-of-care becomes increasingly within reach. By harnessing the power of biomarkers, we can unlock the full potential of personalized medicine, transforming the healthcare landscape for the better.

If you’re working on a research project or want to quantify the efficacy of a treatment with your patients, reach out to us and let us help you get the data you’ll need take the care you provide to the next level.

Reading time: 4 min

The duty of protecting and serving often comes with a heavy toll on the mental health of police officers. Often, this toll manifests in the form of Post-Traumatic Stress Disorder (PTSD).

Hence, stress resilience and performance optimization are critical in high-stress professions such as law enforcement. Amid various innovative training methods, monitoring heart rate variability (HRV) has emerged as a potent tool for managing stress and fostering tactical excellence. Let’s dive in the profound impact of monitoring the HRV of police officers, particularly in combating PTSD and fatigue.

Deciphering HRV and Its Role

HRV is a nuanced measure of the autonomic nervous system’s (ANS) adaptability. It signifies the time variation between successive heartbeats, portraying the delicate balance between the sympathetic (fight-or-flight) and parasympathetic (rest-and-digest) nervous system branches. A high HRV often signals a resilient ANS, whilst a low HRV can indicate heightened stress levels.

Incorporating HRV into training regimes can be instrumental in optimizing performance and recovery. By tracking HRV, police officers can gauge their training readiness, identify overtraining signs, and adjust their routines accordingly. Keeping an eye on HRV may aid in managing the stress response, thus promoting better recovery, mental clarity, and overall well-being.

Perks of HRV for Police Officers

Monitoring the HRV of police officers offers an array of benefits. For starters, it aids in effective stress management. Whether it’s meditation, biofeedback, or a wide range of health lifestyle choices, monitoring HRV may provide valuable insights in how well the ANS is able to adapt to stressors.

Additionally, practices that boost HRV, and thus overall health resilience, may help police officers sustain composure and enhance decision-making in high-pressure situations.

Moreover, HRV training lays emphasis on sleep quality and recovery monitoring, reducing burnout risk and boosting long-term performance.

Research suggests that high HRV links to improved cardiovascular health, enhanced immune function, and increased cognitive performance. Thus, it empowers police officers to make informed decisions for their physical and mental resilience, leading to better job satisfaction and quality of life.

Unraveling the science of HRV and its link to stress resilience

The science behind HRV lies in the intricate interaction between the ANS, heart function, and brain. It mirrors the dynamic balance between sympathetic and parasympathetic activities, influenced by factors like age, fitness level, stress levels, and individual environment.

Studies reveal that individuals with higher HRV exhibit superior stress resilience. They are better equipped to handle stressful situations and recover more efficiently afterwards. HRV training aims to enhance this resilience by teaching individuals to regulate their ANS using specific techniques and exercises, such as breath work or mindfulness practices.

Measuring and Decoding HRV

Measuring and understanding HRV provides critical insights into an individual’s stress resilience and recovery capacity. Several methods are available to measure HRV, ranging from simple smartphone apps to specialized wearable devices, like the Biostrap Kairos wrist-worn device.

Kairos captures beat-to-beat intervals and clinically reliable HRV data, providing an advanced analysis of one’s autonomic function.

The Biostrap Spot Check feature offers a real-time insight into one’s ANS balance via a three-minute recording at rest. As a result, police officers can grasp the extent to which they are in a state of stress (fight or flight) or rest (rest and digest).

Factors influencing HRV and ways to enhance it

HRV can be influenced by several factors, including age, fitness level, stress, environment, and sleep quality. Age generally leads to a decrease in HRV, while regular exercise and physical fitness can improve it. Chronic stress, however, research suggests can reduce HRV and hinder recovery.

To enhance HRV, police officers can adopt various strategies. Stress management techniques, including mindfulness meditation and deep breathing exercises, can also boost HRV. Prioritizing quality sleep and maintaining a healthy lifestyle with a balanced diet further contribute to optimal HRV levels.

HRV training techniques for police officers

HRV training techniques for police officers involve a combination of physical and mental exercises designed to enhance stress resilience and recovery. These techniques aim to improve the autonomic balance and teach individuals how to regulate their physiological responses.

Breathing exercises are a fundamental component of improving HRV. Techniques such as coherent breathing, or box breath, where individuals breathe in and out for equal counts, promote parasympathetic activation and enhance HRV.

Progressive muscle relaxation and guided imagery exercises can also help police officers achieve a state of deep relaxation and bring HRV back and even beyond their baseline.

In addition to these techniques, biofeedback training can be a valuable tool. Biostrap Kairos, for example, offers a clinically proven way to quantify nervous system resilience and rate of recovery.

By utilizing the Biostrap Kairos, police officers can receive real-time feedback on their HRV and track their progress over time.

The role of HRV in addressing post-traumatic stress disorder

Post-traumatic stress disorder (PTSD), is a significant concern among police officers. HRV training can play a crucial role in addressing this condition by promoting stress resilience and recovery.

Research has shown that individuals with PTSD often have lower HRV, indicating an out-of-balance autonomic nervous system. The symptoms can lead to several problems, including:

  1. Difficulty sleeping
  2. Irritability or outbursts of anger
  3. Difficulty concentrating
  4. Hypervigilance
  5. Exaggerated startle response

By engaging in HRV training, police officers can improve their autonomic balance, reducing the risk of developing PTSD symptoms.

HRV training provides them with the tools to manage stress effectively, prevent burnout, and maintain mental well-being.

Case studies and success stories of HRV training in police programs

Several case studies and success stories highlight the effectiveness of HRV training. One such study conducted with a group of young adults showed that HRV training significantly reduced perceived stress levels and improved cognitive performance. Participants reported feeling more resilient and better equipped to handle the demands of their jobs.

Another study involving police officers demonstrated that resilience training reduced physiological and psychological stress and increased peacefulness and vitality. These success stories underscore the potential of HRV training in optimizing police officer performance and fostering psychological resilience.

The future of HRV training in police programs

As demands on police officers continue to rise, the importance of stress resilience and tactical excellence can’t be overstated. HRV training offers a promising solution to enhance performance, promote recovery, and address the physiological and psychological stress they face.

By incorporating HRV into their programs, police officers can improve their stress resilience, decision-making skills, and overall well-being. The science behind HRV and the numerous benefits it offers make it a valuable tool for optimizing police training and performance.

As technology continues to advance, wearable devices like the Biostrap Kairos provide real-time feedback and quantifiable data, making HRV training more accessible and effective. With the support of professional resources and training programs, police officers can harness the power of HRV to excel in their demanding roles.

Choose Biostrap Kairos for a clinically proven way to quantify nervous system resilience and rate of recovery.

Reading time: 5 min

In the demanding world of first responders, stress resilience and tactical excellence are crucial for effective performance. One innovative training method that has gained significant attention is Heart Rate Variability (HRV) training. HRV refers to the variation in time intervals between consecutive heartbeats, which can provide valuable insights into an individual’s physiological and psychological well-being.

Let’s explore the role of HRV training in first responder training programs and how it can improve performance and resilience.

Understanding HRV and its impact on training

HRV is a measure of the autonomic nervous system’s ability to adapt to different situations. It reflects the intricate balance and back-and-forth play between the sympathetic (fight-or-flight) and parasympathetic (rest-and-digest) branches of the nervous system. High HRV is often seen as indicative of a flexible and resilient autonomic nervous system, while low HRV suggests a more rigid and stressed state.

When it comes to training, HRV can serve as a powerful tool for optimizing performance and recovery. By monitoring HRV, first responders can assess their readiness to train, identify signs of overtraining, and adjust their training programs accordingly. HRV training helps individuals regulate their stress response, promoting better recovery, mental clarity, and overall well-being.

Benefits of HRV training for first responders

The benefits of HRV training for first responders are numerous. Firstly, it helps in managing stress effectively. By training the autonomic nervous system to respond more adaptively to stressors, first responders can maintain composure and make better decisions in high-pressure situations.

Additionally, HRV training puts more emphasis on keeping an eye on sleep quality and recovery, reducing the risk of burnout and improving long-term performance.

Furthermore, HRV training improves overall health and well-being. Studies have shown that high HRV is associated with better cardiovascular health, improved immune function, and increased cognitive performance. By incorporating HRV training into their programs, first responders can make more informed decisions to enhance their physical and mental resilience, leading to improved job satisfaction and quality of life.

The science behind HRV and its connection to stress resilience

The science behind HRV lies in the complex interplay between the autonomic nervous system, heart function, and the brain. HRV reflects the dynamic balance between sympathetic and parasympathetic activity, which is influenced by various factors such as age, fitness level, stress levels, and the individual’s environment.

Research has shown that individuals with high HRV exhibit better stress resilience. They are better equipped to handle stressful situations and recover more efficiently afterward. HRV training aims to improve this resilience by teaching individuals how to regulate their autonomic nervous system through specific techniques and exercises, such as breath work or mindfulness practices.

How to measure and interpret HRV

Measuring and interpreting HRV provides valuable insight into understanding an individual’s stress resilience and recovery capacity. There are several methods available to measure HRV, ranging from simple smartphone apps to specialized wearable devices, such our Biostrap wrist-worn devices.

Biostrap captures beat-to-beat intervals and clinically reliable HRV data and provides an advanced analysis of one’s autonomic function.

To interpret HRV, it is important to understand the different metrics involved. These include time-domain measures such as SDNN (Standard Deviation of Normal-to-Normal intervals) and frequency-domain measures such as LF (Low Frequency) and HF (High Frequency) power. Each metric provides unique insights into the autonomic balance and can be used to track changes over time.

Factors influencing HRV and ways to improve it

Several factors can influence HRV, including age, fitness level, stress, environment, and sleep quality. Age generally leads to a decrease in HRV, while regular exercise and physical fitness can improve it. Chronic stress, on the other hand, research suggests can reduce HRV and hinder recovery.

To improve HRV, first responders can adopt various strategies. Regular aerobic exercise, such as running or swimming, has been shown to increase HRV.

Stress management techniques, including mindfulness meditation and deep breathing exercises, can also boost HRV. Prioritizing quality sleep and maintaining a healthy lifestyle with a balanced diet further contribute to optimal HRV levels.

HRV training techniques for first responders

HRV training techniques for first responders involve a combination of physical and mental exercises designed to enhance stress resilience and recovery. These techniques aim to improve the autonomic balance and teach individuals how to regulate their physiological responses.

Breathing exercises are a fundamental component of HRV training. Techniques such as coherent breathing, or box breath, where individuals breathe in and out for equal counts, promote parasympathetic activation and enhance HRV.

Progressive muscle relaxation and guided imagery exercises can also help first responders achieve a state of deep relaxation and bring HRV back and even beyond their baseline.

In addition to these techniques, biofeedback training can be a valuable tool. Biostrap Kairos, for example, offers a clinically proven way to quantify nervous system resilience and rate of recovery.

By utilizing wearable technology, first responders can receive real-time feedback on their HRV and track their progress over time.

The role of HRV in addressing post-traumatic stress disorder

Post-traumatic stress disorder (PTSD), is a significant concern among first responders. HRV training can play a crucial role in addressing this condition by promoting stress resilience and recovery.

Research has shown that individuals with PTSD often have lower HRV, indicating a dysregulated autonomic nervous system. By engaging in HRV training, first responders can improve their autonomic balance, reducing the risk of developing PTSD symptoms.

HRV training provides them with the tools to manage stress effectively, prevent burnout, and maintain mental well-being.

Case studies and success stories of HRV training in first responder programs

Numerous case studies and success stories highlight the effectiveness of HRV training. One such study conducted with a group of young adults showed that HRV training significantly reduced perceived stress levels and improved cognitive performance. Participants reported feeling more resilient and better equipped to handle the demands of their jobs.

Another study involving police officers demonstrated that resilience training reduced physiological and psychological stress and increased peacefulness and vitality. These success stories underscore the potential of HRV training in optimizing first responder performance and fostering psychological resilience.

Professional resources and courses for HRV training

For first responders interested in incorporating HRV training into their programs, there are numerous professional resources and courses available. These resources provide in-depth information on HRV, training techniques, and practical applications.

Organizations such as the HeartMath Institute and the International Society for Autonomic Neuroscience offer comprehensive training programs and certifications in HRV training. These programs equip first responders with the knowledge and tools necessary to implement HRV training effectively.

The future of HRV training in first responder programs

As the demands on first responders continue to increase, the importance of stress resilience and tactical excellence cannot be overstated. HRV training offers a promising solution to enhance performance, promote recovery, and address the physiological and psychological stress they face.

By incorporating HRV training into their programs, first responders can improve their stress resilience, decision-making skills, and overall well-being. The science behind HRV and the numerous benefits it offers make it a valuable tool for optimizing first responder training and performance.

As technology continues to advance, wearable devices like Biostrap Kairos provide real-time feedback and quantifiable data, making HRV training more accessible and effective. With the support of professional resources and training programs, first responders can harness the power of HRV to excel in their demanding roles.

Choose Biostrap Kairos for a clinically proven way to quantify nervous system resilience and rate of recovery.

Reading time: 3 min

First responders play a crucial role in safeguarding our communities, often facing high-stress situations that can take a toll on their mental and physical well-being. Wearable technology has provided great value in various industries for tracking health metrics, such as heart rate, sleep patterns, and physical activity. Its potential in supporting first responders is undeniable in terms of helping to enhance safety and performance, including the benefits of tracking fatigue, sleep, and recovery.

One metric that has received considerable attention in the context of first responders is heart rate variability (HRV).

What is heart rate variability (HRV)

HRV, the variation in time intervals between consecutive heartbeats. It is a measure of the balance between the sympathetic (fight or flight) and parasympathetic (rest and digest) branches of the autonomic nervous system and has proven to be a reliable indicator of an individual’s stress levels, emotional well-being, and overall health.

Utilizing wearables, such as the Biostrap devices, equipped with HRV monitoring capabilities can provide real-time data, helping first responders understand their physiological responses during high-stress situations.

Wearable Technology for Measuring HRV

Wearable technology, such as the Biostrap Kairos, EVO, and Ethos can continuously measure HRV throughout the day and night. These devices use either ECG or photoplethysmography (PPG) technology. The latter to measure the changes in blood volume in the microvascular bed of tissue, providing a non-invasive method for HRV assessment.

Advantages of Wearable HRV Monitoring

Measuring HRV offers several advantages for first responders:

  • Continuous, real-time monitoring provides a comprehensive picture of an individual’s HRV throughout the day, allowing for more accurate assessments of stress and fatigue levels.
  • Non-invasive and unobtrusive technology enables first responders to wear the devices during their daily activities and while asleep without hindrance.
  • Data collected from wearable devices can be easily accessed and analyzed, allowing for personalized recommendations and interventions.

Why HRV Matters for First Responders

By monitoring HRV, first responders can gain insights into their autonomic nervous system’s functioning, enabling them to identify early signs of stress and take appropriate action. This information empowers them to implement self-regulation techniques, such as deep breathing exercises and mindfulness, to manage stress and maintain their performance under pressure.

The impact fatigue

Fatigue is a significant challenge first responders face. Numerous studies have established a link between the demanding nature of their work and increased risk of this condition. Literally has shown that over 50 percent of firefighter deaths are due to stress and exhaustion.

Additionally, studies have established that chronic fatigue might reduce HRV. By harnessing the power of wearable technology, we can gather valuable insights into their physiological responses, enabling proactive measures to mitigate the risk and impact fatigue.

Sleep tracking

Fatigue resulting from inadequate sleep is a significant concern for first responders, as it can impair cognitive abilities, decision-making, and reaction times, jeopardizing both their safety and the safety of those they serve. Wearable technology with sleep tracking capabilities allows first responders to monitor their sleep patterns and ensure they are getting the rest they need.

Sleep tracking can provide valuable data on sleep quality, duration, and disruptions, helping first responders identify potential sleep disorders or patterns that may impact their performance

Armed with this knowledge, they can implement strategies to improve sleep hygiene, such as maintaining a consistent sleep schedule, creating a conducive sleep environment, and adopting relaxation techniques before bedtime. These measures can significantly enhance their alertness and cognitive functioning, reducing the risk of fatigue-related challenges on duty.

Optimizing performance and safety

By leveraging HRV and sleep tracking, Biostrap enables first responders to take proactive steps toward optimizing their performance and safety. Continuous monitoring of HRV can aid in identifying patterns that may indicate the need for extended rest or recovery periods, preventing burnout and promoting overall well-being. Additionally, sleep tracking empowers first responders to prioritize and improve their sleep, ensuring they are well-rested and mentally sharp during critical moments.

Furthermore, the data collected through wearable technology can be analyzed on a broader scale to identify trends across teams. This information can be used to develop evidence-based protocols and training programs aimed at promoting resilience, reducing stress-related incidents, and improving overall performance.

More research needed but we’re at a good start

More research is needed to better understand the relationship between HRV and job-specific stressors faced by first responders, as well as to develop targeted interventions and strategies based on HRV data.

However, wearable technology, like the Biostrap devices, that are equipped with HRV and sleep tracking capabilities hold tremendous potential in supporting our first responders. By providing valuable insights into their physiological responses, these devices offer an opportunity to manage stress, reduce the risk of fatigue, and optimize performance and safety.

As we continue to explore innovative solutions, it is essential to prioritize the well-being of our first responders and equip them with the tools they need to excel in their noble service to society.

Reading time: 4 min

Have you ever woken up feeling foggy, low energy, maybe even achy and craving all the sugars in the world? You likely didn’t get enough deep sleep. Slow-wave deep sleep, also known as stage 3 non-REM (NREM) sleep, is an important stage of sleep that is characterized by slow brain waves, reduced heart rate, blood pressure, and breathing rate, and relaxed muscles. This stage of sleep is essential for both physical and mental health, and getting enough of it is crucial for your recovery and overall well-being. 

The amount of deep sleep you may get each night varies depending on factors such as the time of your last coffee, meal or workout, or even your stress levels. While you will go through several cycles of sleep during the night, it’s been found that you will spend more time in deep sleep during the first half of your sleep session. Then with each sleep cycle, deep sleep decreases. It’s exactly opposite to rapid eye movement (REM) sleep. You’ll spend less time in REM in the first half and more time closer to waking up.

In our blog about why tracking your sleep matters, we break down the different stages of sleep, so we highly recommend you to take a look for some additional details.

How do you know when to go to sleep?

There are two main systems that regulate your sleep: circadian rhythm and sleep homeostasis. You have heard us talk about circadian rhythm before, as it’s the environmental cues that control your sleep-wake cycle. As such, the sunrise triggers your body to release cortisol that helps you be alert, while sunsets and darkness impact melatonin release to help you sleep.

While the circadian rhythm, the body’s 24-hour internal clock, is impacted by external cues, sleep homeostasis is an internal regulatory mechanism, also known as sleep drive. It’s similar to your body telling you that you’re hungry and you should eat. The longer you stay awake the stronger the drive gets to make you sleepy.

The more consistent you are with your sleep schedule, the better quality sleep you’ll get each night as both your circadian rhythm and your sleep homeostasis will be in balance. The longer you adhere to that schedule and maintain that balance, the easier it will be for your body to develop a healthy sleep architecture with adequate time spent in all necessary sleep stages.

When will you get the most deep sleep

With a consistent sleep-wake cycle, your body will prepare itself to tap into deep sleep the first half of when you’re used to going to bed. Generally, going to bed before midnight and around 10 p.m. is most beneficial for getting the right amount of deep sleep.

However, if you are used to going to bed around 10 p.m. each night, but stay up on the weekend past midnight, you are stripping your body of most of this restorative phase of sleep. According to the Sleep Foundation, a few signs that you’re not getting enough deep sleep are:

  • Feeling drowsy and not refreshed;
  • Lack of alertness and attention;
  • Having a hard time learning and forming new memories;
  • Cravings for high-calorie food mostly sugars and simple carbohydrates.

Why it’s important to get enough slow-wave deep sleep

The physiological adaptations that occur during slow-wave deep sleep (SWS) help you to wake up refreshed, energized, and clear-headed, so you can perform your best that day. Take a look at below how SWS impacts your physical and mental health as well as mood and metabolism.

Physical Recovery

During SWS, the body undergoes a process of physical restoration and repair. This includes the release of growth hormones that stimulate the repair and regeneration of tissues, as well as the rebuilding of bone and muscle. It is also important for the immune system, as it promotes the production of cytokines – proteins that help the body fight infections, inflammation, and stress.

In addition, SWS helps the body conserve energy and replenish glycogen stores – the primary fuel source for muscles during physical activity. This is important for athletes and anyone who engages in regular physical activity.

Mental Recovery

During this stage of sleep, the brain organizes and processes the information that has been acquired during the day. This includes the consolidation of memories, the formation of new neural connections, and the pruning of unnecessary ones.

It’s been found that the glymphatic system that helps control the flow of cerebrospinal fluid, flushes out toxic molecules from the brain during SWS. These include beta-amyloids that are one of the main causes of cognitive disorders such as Alzheimer’s Disease and other dementias.

Studies have shown that SWS is particularly important for memory consolidation and learning. During this stage of sleep, the brain replays the neural activity that occurred during the day, which strengthens the connections between neurons and helps to consolidate memories.

Mood Regulation

Sleep plays a vital role in mood regulation, and SWS is no exception. Research has shown that sleep deprivation can lead to irritability, mood swings, and even depression. This is because SWS helps to regulate emotions, and the lack of it can disrupt the balance of neurotransmitters, such as GABA, dopamine, and serotonin that are responsible for mood regulation.

Energy Restoration

Finally, SWS is important for energy restoration. During this stage of sleep, the body conserves energy and replenishes glycogen stores. Additionally, it’s when the body rebalances your blood sugar levels. Studies have found that a lack of deep sleep may increase glucose levels and decrease insulin sensitivity. 

Overall, slow-wave deep sleep is critical for physical and mental health. Getting enough of it is essential for our overall well-being, and a lack of it can lead to a range of health problems, including immune dysfunction, cognitive impairment, mood disorders, and even chronic diseases like obesity and diabetes. 

As most of it occurs during the first couple of hours of your nightly slumber, make sure to stay consistent with when you go to bed and aim for shutting the lights off before midnight.

The best way to keep an eye on how much deep sleep you get each night is to track your sleep. The Biostrap Recover Set provides you with all the tools you need to gain valuable insights on your sleep quality and how much time you spend in each sleep stage. Additionally, utilizing AI and machine learning, our Sleep Lab feature will recommend the best bedtime and wake-up time for you to help you to recover optimally each day.

Reading time: 3 min

Are you tired of feeling groggy and unproductive during the day? The key to unlocking your full potential may lie in something as simple as improving your sleep hygiene. Not only can good sleep habits lead to more restful and restorative sleep, but they can also have a positive impact on your heart rate variability (HRV). In this article, we’ll dive into the ways that good sleep hygiene can improve HRV and what you can do to get started on the path to better sleep and overall wellness. So, let’s get ready to catch some Z’s and improve your health!

What is HRV

Heart rate variability (HRV) is a measure of the variation in the time intervals between successive heartbeats. It is a marker of the functioning of the autonomic nervous system, which regulates many of the body’s internal processes, including heart rate, breathing rate, and blood pressure. Additionally, it is a non-invasive tool used to assess the balance between the sympathetic and parasympathetic nervous systems.

While it’s a validated reflection of the state of the autonomic nervous system, it is very easily influenced by both internal, external, and environmental factors. Nearly anything you do, think or are exposed to will trigger a shift in your HRV. For example, breathwork and deep breathing has been found to have positive effects on HRV, and so does spending time out in nature or socializing with friends. On the other hand, chronic stress and anxiety may have a negative impact.

Understanding your HRV levels can be a very powerful tool to have insight into how resilient your body is and how recovered you are on any given day. Additionally, HRV has been found to be an important aspect of cardiovascular health and has been associated with morbidity and mortality in multiple disease states, including cardiovascular disease, diabetes, and hypertension.

There are a myriad of practices that are beneficial to your HRV and incorporating healthy sleep habits is one of them. So let’s take a look at how and what are some good examples.

What is good sleep hygiene

Getting a good night’s sleep is essential for our physical, emotional, and mental health. Unfortunately, many of us neglect the importance of sleep and sacrifice our rest for other priorities such as work, socializing or watching TV. However, a lack of sleep and irregular sleep patterns can have serious consequences, ranging from daytime fatigue to an increased risk of chronic health conditions such as obesity, diabetes, and heart disease.

Good sleep hygiene refers to a set of habits and practices that can help us get the restorative sleep our bodies need. By following good sleep hygiene practices, we can improve our sleep quality and duration, allowing our bodies to recharge and tap into essential restorative mechanisms overnight. In turn, this can lead to a range of health benefits, including improved immune function, better mood and mental health, and increased productivity and cognitive performance.

Several studies have shown that good sleep hygiene can have a positive impact on HRV. For example:

Consistent sleep schedule

Maintaining a consistent sleep schedule helps regulate the body’s internal clock also known as circadian rhythm, which can improve HRV. A study published in the Journal of Scientific Reports found that college students who went to bed and woke up at the same time every day had better academic performance than those with irregular sleep schedules. 

Create a relaxing sleep environment

Creating a relaxing sleep environment can help reduce stress and anxiety, which can improve HRV. For example, using a white noise machine or listening to calming music before bed can promote relaxation and help your body activate its parasympathetic nervous system and improve your HRV.

Avoid caffeine and alcohol

Caffeine and alcohol can interfere with sleep and disrupt HRV. A study published in the Journal of Clinical Sleep Medicine found that caffeine consumption was associated with a significant increase in sleep disturbance.

Avoid screens and stimulating activities

 

Screens emit blue light, which can interfere with the body’s production of the sleep hormone melatonin and disrupt sleep. Engaging in stimulating activities, such as watching an exciting movie or playing a video game, before bed can also interfere with sleep and HRV.

Overall, good sleep hygiene is an important factor in promoting healthy sleep and improving HRV. By following good sleep habits and creating a relaxing sleep environment, you can improve the quality of your sleep and support the health of your autonomic nervous system.

Incorporating a wearable such as the Biostrap into your routine takes your health monitoring to the next level. By doing so, you will gain access to a wealth of objective and clinically accurate data on a wide range of metrics such as sleep quality, HRV, resting heart rate, and oxygen saturation levels, allowing you to make informed decisions about your overall health and wellbeing.

Reading time: 2 min

Sleep deprivation is a multi-factorial health issue that may trigger a cascade of serious medical conditions. More on this in a little bit, but nonetheless, it has a significant impact on the body, including the autonomic nervous system (ANS) that regulates many of the automatic processes — heart rate and blood pressure. The connection between sleep deprivation and HRV is relevant in connection to the activity of the ANS, as HRV has been found to be a reliable indicator of ANS function and overall health.

HRV and the autonomic nervous system

Studies have shown that sleep deprivation can cause a reduction in HRV, particularly in the high-frequency range, which is primarily influenced by the parasympathetic nervous system. The parasympathetic nervous system, or PNS, is responsible for calming the body, reducing stress, and maintaining balance and homeostasis. It is particularly active during times of rest and sleep.

When you are asleep, there is a shift in ANS activity from sympathetic dominance (fight-or-flight response) to parasympathetic dominance (rest-and-digest response), which helps the body relax and prepare for restorative sleep. However, when you are sleep deprived, this natural shift in ANS activity is disrupted, leading to reduced HRV.

When it comes to dissecting HRV, we look at high-frequency and low-frequency HRV which each have their own relationship with the autonomic nervous system.

Sleep deprivation and low/high-frequency HRV

The reduction in high-frequency HRV during sleep deprivation is thought to be due to an increase in sympathetic nervous system activity, which is responsible for the body’s fight-or-flight response. This increased sympathetic activity during sleep deprivation can lead to a state of hyperarousal, making it difficult to fall asleep and stay asleep, perpetuating the cycle of sleep deprivation.

Additionally, sleep deprivation has been associated with an increase in low-frequency HRV, which is influenced by both the sympathetic and parasympathetic nervous systems. This increase in low-frequency HRV may reflect an increase in sympathetic nervous system activity when you’re sleep deprived, which can lead to increased stress and anxiety, and negatively impact your overall health.

Reduced HRV is associated with an increased risk of cardiovascular disease, metabolic disorders (i.e obesity), and poor mental health outcomes, including depression and anxiety. Chronic sleep deprivation has been linked to an increased risk of these health conditions, highlighting the importance of getting enough quality sleep.

In conclusion, sleep deprivation can significantly impact HRV, leading to a reduction in high-frequency HRV and an increase in low-frequency HRV, which can negatively affect overall health and well-being. Therefore, it is essential to prioritize healthy sleep habits to maintain optimal HRV and overall health.

Whether you want to monitor your own health or you’re working with patients, measuring HRV nocturnally may serve as an essential tool to help to quantify how certain levels of sleep deprivation may affect HRV and overall recovery.

Reading time: 2 min

What is it

Sleep latency is the term given to describe how long it takes to fall asleep. Sleep latency can vary greatly due to behaviors before bedtime, such as alcohol, medications, exercise, diet, and blue light exposure, among others.

However, tracking sleep latency can provide additional insight to help reflect on health, behavior, and intervention changes.

How is it measured

Sleep latency is measured in minutes from the time an individual attempts to fall asleep to the time when the individual enters the first stage of sleep.

Tracking changes in physiological metrics through photoplethysmography (PPG) and accelerometry provides improved insight as individuals may have difficulty reporting the time of initial sleep onset. By tracking metrics such as heart rate, heart rate variability, respiration rate, and limb movements, a good understanding of bedtime and onset of sleep can be made.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Correlations to health conditions

It is important to note that directionality and magnitude of latency may or may not have clinical relevance based on an individual’s situation. For example, long sleep latencies can be indicative of disorders, particularly related to stress or insomnia. However, shortening sleep latency may not reflect positive changes, as high amounts of sleep debt decrease sleep latency. Further, substances such as alcohol may reduce sleep latency but may lead to lesser quality of sleep.

Many of the correlations between latency and health are drawn in anxiety and depression. These psychological disorders are relatively common and affect sleep and sleep latency. However, sleep latency is associated with decreased total sleep, where less sleep causes more anxiety and depression.

Thus, it can be essential to monitor sleep latency changes to catch trends before they become problematic.

Normal or acceptable ranges

The National Sleep Foundation acknowledges up to 30 minutes of sleep latency, regardless of age, as appropriate. Sleep latency of 31-45 minutes is listed as ‘uncertain,’ which could be due to individual trends. It stands to reason that very short sleep latency (<5 minutes) could indicate problems with fatigue and sleep deprivation; however, more research is needed on normative values in this range.

Interpreting trends

Although the clinical recommendations remain unclear, tracking sleep latency could benefit most individuals. This metric, inversely associated with total sleep duration, could provide insight into behavioral changes and how they affect sleep architecture.

Should sleep latency trend negatively for an individual, behavioral interventions could be suggested to correct sleep latency and potentially increase total sleep duration.

Reading time: 2 min

What is it

Snoring is characterized by partial obstruction of airways that results in noise while breathing. While snoring is a fairly common occurrence, it has the potential to affect sleep quality and physiological parameters, while some snoring can be benign. In addition, snoring can be disruptive to other individuals’ sleep if present in the same room, and is a fairly common stressor for families and partnerships.

How it is measured

Snoring is most often measured by microphone recording during sleep. Biostrap uses the microphone in the individual’s phone, placed near their bed during sleep, which can detect snoring patterns throughout the night. This allows measurement of frequency and intensity of snoring that is otherwise difficult to quantify without a sleep study. 

Biostrap reports snoring level severity as: none, mild, moderate or severe

Correlation with health conditions

Snoring itself can wake up both the individual and others present during sleep, which can affect sleep quality and duration, leading to increased fatigue. However, more importantly, snoring can be associated with obstructive sleep apnea. Obstructive sleep apnea is when airways are obstructed enough to restrict airflow. In typical sleep apnea, airflow is restricted for 10+ seconds for an average of 5 times per hour. This can lead to impaired oxygen transportation and have downstream physiological effects.

Many times, sleep apnea requires intervention in order to improve health outcomes associated with the disorder. While snoring can occur in the absence of sleep apnea, snoring intensity (measured in decibels) is positively correlated with obstructive sleep apnea intensity, and therefore warrants monitoring of snoring frequency and intensity, along with other physiological metrics to screen for sleep apnea.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Normal or acceptable range

It is estimated that ~49% of people experience occasional snoring, while 10-36% of people snore regularly. Currently, there are no recommended ranges or normative values for snoring, but generally less is better. Simple interventions, such as postural changes, breathing devices, and room conditions, can lead to decreased snoring, potentially increasing sleep quality. 

Interpreting Trends

Monitoring snoring over time may illustrate if/when snoring begins to affect physiology. Should snoring coincide with decreased SpO2, increased heart rate, awakenings, or self-reported fatigue, it is likely that snoring is affecting the quality of sleep, and may warrant intervention. Any changes in behaviors aimed at reducing snoring (postural changes, breathing devices, or room conditions) can be quantified using Biostrap’s sleep analysis, measuring snoring, sleep stages, awakenings, heart rate, SpO2, and more. 

Reading time: 2 min

What is it?

Sleep duration is simply the amount of time an individual is asleep. This measure is essential to quantify, as it directly impacts physiological and psychological parameters in the short and long term, impacting health, performance, and longevity.

What does it measure?

Sleep duration is the total sum of time spent asleep, regardless of sleep stage. Using combinations of heart rate, heart rate variability, breathing, motion, and pulse waveform data, approximating sleep versus awake time is possible.

Biostrap uses inputs from all the listed measurements to estimate light sleep, deep sleep, and time spent awake; therefore, the reflected sleep duration is the sum of light and deep sleep.

Correlation with health conditions

Total sleep duration is a commonly reported metric and highly correlates with health outcomes. Sleep is vital to regulating biological processes, allowing adaptation, recovery, and preparation. Many repair processes occur during sleep, with surges in growth hormones and reduction in stress hormones.

Physiologically, increased sleep duration has been shown to reduce stress, improve cardiovascular markers (e.g. heart rate, heart rate variability, and arterial stiffness), reduce weight gain, improve immune function, and lower risk of all cause mortality and varying diseases. As such, sleep appears to improve physiological pathways robustly.

In addition to physiological effects, increased sleep has many cognitive benefits, including improved memory, problem-solving, and reaction speed.

Normal or acceptable range

The American Academy of Sleep Medicine recommends at least 7 hours of sleep per night for adults aged 18-60 years. The National Sleep Foundation recommends supplementing this recommendation with 7-9 hours of sleep per night for adults aged 65 years and older.

Biostrap records users’ sleep each night, and from this data, we can gather average values of distinct populations.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Interpreting Trends

Considering the broad health implications associated with sleep duration, tracking sleep duration over time is recommended, so individuals may notice trends in their behavior. Including sleep duration into longitudinal metrics can either explain or rule out other physiological trends and therefore is included in Biostrap biometrics, allowing users and remote monitors to have a broader view of individual health.

Reading time: 2 min

What is deep sleep

Sleep can be broken down into four different ‘stages’ of sleep. Most commonly, sleep is divided into rapid eye movement sleep (REM) and non-REM (NREM) sleep. NREM sleep accounts for most of the sleep (75-80% of total sleep duration), while REM sleep makes up the rest. Within NREM sleep, there are three stages; the first stage is light sleep and is mostly the transitory onset of sleep; the second stage is also considered light sleep but makes up a longer duration than stage 1.

The third and fourth stages are considered ‘deep sleep’ and are characterized by slow brain waves. Deep sleep makes up roughly 13-23% of nightly sleep. It is during these stages that sleep is restorative and leads to many adaptive physiological outcomes that help the body adapt and repair. As such, deep sleep is more important than total sleep time, affecting health outcomes.

How it is measured

Deep sleep is often identified by slow waveforms on an electroencephalogram (EEG), which measures brain wave activity. As an alternative, deep sleep has been shown to have decreased movement and altered vital signs, particularly: lower heart rate, higher heart rate variability, lower blood pressure, lower temperature, and decreased sympathetic activity.

By measuring these changes using wearable technologies (accelerometers and photoplethysmography [PPG]), a close approximation of sleep stage can be made. This technology allows for passive measurement with much less equipment than a traditional EEG or polysomnogram.

The Biostrap Buzz

Sign up to our email newsletter to receive curated content on the latest news in digital health and health optimization. Plus, special access to Biostrap offers and community updates.

Correlation with health conditions

Much like total sleep time, the therapeutic benefits of deep sleep have robust physiological effects across many organ systems. However, deep sleep appears to be a better indicator of the quality of sleep than the total duration of sleep.

Deep sleep has been shown to affect growth hormone production, glucose metabolism, synaptic processes (e.g. learning/memory formation), and immune function changes. Sleep restriction, influencing the duration of deep sleep, has been linked to many adverse health outcomes, including cardiovascular disease, diabetes, neurodegenerative diseases, poor cognitive function, and many more conditions. As such, it is essential to get adequate amounts of good quality sleep, permitting deep sleep.

Normal or acceptable range

Currently, there are not widely accepted values specific to deep sleep. For each sleep session, most individuals have 13-23% of their duration in deep sleep. The recommended amount of deep sleep has not been thoroughly evaluated, but many experts believe it is better to have more than less. It should be noted that exceptionally high amounts of deep sleep may indicate short-term deficiencies.

Interpreting trends

Deep sleep is a complex biometric that is difficult to quantify. EEG devices provide a strong understanding of sleep stages and progressions but are less realistic for an individual on a regular basis. However, using accelerometers and PPG wearables, light and deep sleep can be approximated on a nightly basis and easily tracked over time.

As with total sleep duration, tracking deep sleep can provide insight into its contribution to changes in health-related outcomes. As a more challenging variable to quantify, monitoring deep sleep over time can also provide insight into lifestyle changes and how they affect deep sleep. For example, tracking how a medication affects deep sleep may provide insight into its efficacy or side effects.

Reading time: 3 min

Calisthenics may remind some of PE classes from a foregone era, but like all fitness trends they cycle around again.

Trendy workout formats like Crossfit, bootcamp classes, Strong by Zumba, and others are fully or partially based on calisthenics. Even Pilates, barre, power yoga, and dance fitness classes contain exercises that may be described as calisthenics.

What Are Calisthenics? Is It Just Another Name For Bodyweight Training?

The term Calisthenics refers to exercises that don’t require weights, machines, or equipment. People also frequently refer to calisthenics as body-weight training.

Most classic Calisthenics are a form of resistance or strength training exercises. Popular bodyweight calisthenics include squats, pushups, lunges, crunches, and planks. Some high-intensity calisthenics raise the heart rate and trainers and boot camp instructors often arrange them into circuits for an interval-based or steady state cardio workout. In addition to the previous examples, calisthenics that fit this category include jumping jacks, burpees, and mountain climbers.

Many prefer calisthenics and bodyweight training because they don’t need expensive equipment to get an effective workout.

Pros And Cons Of Bodyweight Calisthenic Workouts

Some people base their fitness routine around bodyweight training and calisthenics. Others prefer to supplement their weight lifting workouts with calisthenics. You don’t have to choose one approach exclusively, however there are some key benefits and disadvantages to bodyweight training.

Benefits Of Calisthenics Based Workouts

  • You use your own body or gravity as resistance so you don’t need additional equipment.
  • Most calisthenics can be made more or less challenging by adding equipment such as resistance bands. For example, people training to do pull-ups can use a heavy resistance band to make the pull-up a little easier while they build their strength.
  • Many calisthenics require only a small amount of space so people can do them in hotel rooms, dorm rooms, and other crowded spaces.
  • You can adapt calisthenics to many training strategies. For example, many trainers leaders arrange bodyweight exercises into circuits for High Intensity Interval Training (HIIT) workouts. Others may arrange them into a classic bootcamp style workout.
  • They offer a fun, excuse-proof way to workout. Some people mix it up through apps, workout card games, or following their favorite YouTube trainer. The options are limited only by your fitness and creativity.

Disadvantages of Calisthenic Based Workouts

  • Like any exercise, you need to use good form for a safe and effective workout. If a bodyweight exercise is too challenging, it may not be possible to modify certain exercises.
  • Weight lifting is so effective because you can progressively increase the resistance as your body adapts. For some bodyweight exercises, once you master it you have to switch to more challenging variations or add extra resistance to see more gains.
  • People who use step counting fitness trackers often feel disappointed when they work up a sweat but see a very low step count. Many effective strength exercises like squats, pullups and pushups do not register as steps for most trackers.

Calisthenics And Your Biometrics

Calisthenics affect your biometrics in different ways depending on how they fit into your routine. Vigorous circuit workouts using calisthenics will affect your Heart Rate Variability (HRV) readings as they involve anaerobic training. You may need to allow yourself an active recovery day after a vigorous calisthenics circuit session. As you get fitter, you may find that this style of program causes your and HRV to trend downwards over time.

As mentioned, people who wear popular step counting devices sometimes feel cheated by how few steps they accumulate during a calisthenics workout. Fortunately, exercise classification functions evolved and Biostrap can recognize, classify and track over 100 exercises including many popular calisthenics. This function also may help you refine your technique in response to the feedback.

Finally, many use heart rate training to pace their bodyweight workouts. Your working heart rate may prompt you to ease up or work harder depending on conditions that day. Monitoring your heart rate also helps you better time your recovery intervals.

Calisthenics are ideal whenever you want or need an efficient, no-equipment workout. They are a classic in bootcamps, gyms, PE classes, and boutique studios throughout the world.

Sources And Resources

Drop and Give Me 20! – A research study on the effectiveness of bootcamp style fitness trends by the American Council on Exercise (ACE) By John Porcari, Ph.D., Kirsten Hendrickson, B.S., and Carl Foster, Ph.D., with Mark Anders

The Seven Minute Workout – The Well, New York Times, by Gretchen Reynolds

Reading time: 3 min

You naturally have your own body rhythm that determines how much sleep you need and when your body prefers to sleep. One of the best things you can do for your health is to get enough sleep. Lack of sleep contributes to many health issues and also tends to lower your Heart Rate Variability scores.

By recognizing your natural rhythms, you may be able to plan your day to capitalize on your strengths. In addition, timing your rest and workouts may even help improve your heart rate variability (HRV).

What is Circadian Rhythm?

According to the National Sleep Foundation, your circadian rhythms reflect your cycle of alertness, drowsiness, and sleep. Do you feel drowsy between 1 pm and 3 pm? If so, this is part of an average circadian rhythm. The exact time varies depending on whether you are a morning lark or a night owl. If you are well rested you might not feel as drowsy as you would if sleep deprived.

Your brain’s hypothalamus controls your circadian rhythm. Usually, natural day and night patterns influence this resulting in people craving more sleep during darker winter months than they do during the long summer days. The modern lifestyle disrupts natural circadian rhythms.

Finding Your Circadian Rhythm

In addition to day and night patterns, lifestyle and personal preferences may come into play. Dr. Michael Breus wrote “The Power of When” about individual variations in circadian rhythms. He classes people into four sleep chronotypes types: bear, lion, dolphin, and wolf.

According to Dr. Breus, your chronotype determines when you are most energetic. You can live your best life by planning to work, exercise, make decisions, or sleep at the “right” times for your natural rhythm.

He developed a sleep rhythm quiz to help people determine which type best describes them.

Wolf:

The wolf is the proverbial night owl. If you are a wolf you tend to be drowsy if you need to wake up early in the morning. Wolves peak from noon to 2 pm and again in the evening.

Lion:

The lion is the early bird that gets the worm. If you are a lion then you are likely ready to seize the day early in the morning. Your most productive hours are in the early morning. You tend to feel exhausted at night and go to bed early.

Dolphin:

The dolphin is harder to categorize than the bear, lion, and wolf. If you are a dolphin, you may be a light sleeper and often feel sleep deprived. Dolphins tend to be most productive mid-morning to early afternoon.

Bear:

The bear is the most common chronotype. If you are a bear, then your waking and sleeping rhythms follow the sun and moon. You sleep well and are most alert mid-morning. You may feel a big energy dip during the mid-afternoon.

Tips:

We can’t always control which hours we need to be awake. Work schedules, family obligations, travel, and our social lives sometimes require us to be awake during less ideal times. Try these tips to make the best use of your natural rhythms:

  • Try to avoid accumulating sleep debt. If you are caught up on your sleep then staying up later one night or getting up too early doesn’t affect you as much.
  • Plan your day to prioritize getting 7-8 hours of sleep most nights.
  • Try to plan your challenging projects or meetings during your peak alertness and productivity hours as much as possible.
  • Pay attention to how you feel and to your daily HRV readings.
  • Be physically active or exercise daily, for many people outdoor activity helps balance their circadian rhythms.

Working with your body’s rhythm helps you stay productive while looking and feeling your best.

Sources and Resources

Reading time: 5 min

We know we need water, but there remains confusion as to whether or not we should drink water before we go to sleep. Some assume that drinking water just before bed will keep us hydrated throughout the night while others question whether it has any real health benefits. Which is true, and what’s nothing more than “watered-down” information? We set out to answer this question.

The Cons of Drinking Water Before Bed

Drinking water before bed can influence your body in both negative and positive ways. Below, we’ve broken down the primary means by which drinking water before bed can negatively impact your body.

Your Sleep Cycle

Your body’s sleep cycle is a complex process that dictates when you feel sleepy, when you feel alert, and how often you wake throughout the night. Interrupt this cycle and you may experience sleep deprivation symptoms such as sleep inertia, afternoon grogginess, or a change in your mood.

While drinking a glass of water before bed may provide your body with fluids, it can also impact your sleep cycle by increasing overnight urination, also known as nocturia. Because your body requires six to eight hours of sleep each night, fluid intake can influence how often you wake to use the bathroom.

This is why sleep deprivation can then take hold. Research indicates a lack of sleep can negatively impact your immune system, your energy levels, and more.

This information shouldn’t dissuade you from drinking water before going to sleep. As you’ll soon find out, there are some health benefits to nightly hydration. But it should serve as a cautionary note — if you decide to drink water before bed, be sure the amount of water you consume will not impact your sleep. Your body needs both water and sleep to function properly.

The Benefits of Drinking Water Before Bed

 

While drinking water before bed can interrupt your sleep cycle or create nocturia, it can also provide numerous benefits. We broke these down in greater detail below.

Detoxing Your Body

Water acts as a natural cleanser that helps your body rid itself of unwanted toxins while simultaneously aiding your digestive system.

Should you choose to drink water before bed, consider drinking warm water or hot water. Warm water increases blood circulation and your sweat output. Though sweating during the night may cause your body to lose fluids, it will also remove excess salts and cleanse your skin cells, thus acting as a natural detox for your body.

Preventing Hangovers

​Ah yes, the dreaded hangover. You spent the night celebrating with friends and woke the following morning feeling as if you were just hit by a truck. When you drink alcohol, you will need to urinate more, further promoting dehydration and amplifying the symptoms of a hangover.

The best way to avoid the classic hangover is to drink alcohol in moderation — this much we know. But water can help reduce a hangover’s effects. These include drinking water between each alcoholic beverage and drinking a couple of glasses of water before going to bed.

If you anticipate spending the night out with friends, leave a full water bottle on your bedside table before heading out for the night. When you return, drink a few ounces of water to avoid a serious headache the next day.

Improved Mood and Mental Performance

Do you ever feel better when you’re fully hydrated? Maybe your mind feels sharp or instead you’re simply on your game. Believe it or not, a lack of water can negatively impact your mood and disrupt your sleep cycle in-turn.

Research suggests that those who are consistently hydrated feel better than those who are not. By drinking enough water during the day and before bed, you stand to replenish fluids and get better sleep that will boost your mood and mental strength.

Weight Loss

No, it’s not some fad from the back of a tabloid magazine. Believe it or not, drinking cold water before bed actually burns calories simply because your body needs to warm up the water. It works twice as hard to do so while you’re asleep, as your body is in a state of rest with little movement.

Don’t expect this tactic to burn calories at a similar rate to exercise. But cold water intake can still burn calories while you sleep, and capitalizing on this is as simple as downing a glass of cold water before bed. However, the healthiest and simplest weight loss management relates to diet and physical activity.

Drinking Lemon Water

Not only does drinking cold water at night benefit you, warm lemon water will do so as well.

Lemons are full of health benefits. While we often consume lemons because of their vitamin C content, they also contain other nutrients and minerals such as pectin, vitamin E, vitamin B. A glass of lemon water in the morning will boost your immune system and promote your well-being by eliminating free radicals that may otherwise promote illness and disease. Hot lemon water can also balance your body’s pH levels to promote cell function and structure.

But the benefits of drinking lemon water don’t end there. Lemon water also acts as a diuretic that increases urination to help purify your body and your urinary tract (again, moderate your bedtime consumption wisely). The citric acid in lemons can help prevent kidney stones by making your urine less acidic. And when you drink lemon water, it even keeps your breath fresh. (However, the citric acid can erode tooth enamel over time, so be sure to keep an eye on this.)

Moderate lemon juice and hot water before bed can promote a healthy lifestyle. It’s a natural remedy to maintain good health with very few side effects.

To prepare a cup of lemon water, squeeze fresh lemon or pour lemon juice into a mug of warm water. It’s a sort of healthy and rejuvenating lemon tea.

When Should You Drink Water?

Now that we’ve come to understand the many benefits of drinking water before bed, let’s discuss when you should drink water and when you shouldn’t.

Drinking water before bed has a number of benefits, but drinking too close to bedtime can disrupt your sleep cycle and impact your overall health. Over time, this can lead to issues such as heart disease and weight gain.

At the end of the day, you simply need to drink enough water to avoid dehydration while simultaneously ensuring you’re not waking in the middle of the night to use the bathroom. A general rule of thumb suggests you avoid drinking water two hours before sleeping to avoid waking up at night.

Most online guides will suggest drinking eight cups of water per day on average, though this may vary depending on your needs. For instance, you may need to consume more water if you’re physically active or if it’s hot outside. Drink water with every meal and when you’re hungry, and consume foods like fruits or vegetables that possess higher water content levels.

If you’re not sure how much water you should drink or when you should drink it, simply speak with a dietitian.

An Ode to Water

Our bodies constantly crave water in the hopes of replenishing fluids that are lost over time. From sweating to sleeping to bowel movements, our body is losing water that we need to replace. While drinking water before bed may influence your sleep cycle, it can also provide a number of health benefits you may want to consider taking advantage of.

Take time to determine how much water you should drink before bed. It should be enough to hydrate you without waking you to use the bathroom consistently. Otherwise, enjoy the many benefits of your body’s favorite fluid.

Reading time: 5 min

Exercising, reducing stress, and maintaining a routine are all things that support a healthy sleep schedule. But did you know that nutrition also plays a role in sleep quality? Tryptophan, also known as L-tryptophan, is one nutrient that’s essential for regulating both sleep and mood.

While many people get tryptophan from their normal diets, others have great success when supplementing with L-tryptophan. Whether you’re struggling with sleep or know someone who is, here’s a look at the promising research behind supplementing with L-tryptophan for sleep and overall well-being.

What Is L-Tryptophan?

The body relies on amino acids for important functions like building proteins, regulating neurotransmitters, and regulating immune and metabolic functions.

While not all amino acids are critical to survival, there are nine essential amino acids that the body requires to function at optimal health. Essential amino acids cannot be created by the body and must instead be ingested through diet.

Tryptophan is one of these nine essential amino acids and can be found in common foods like turkey, fish, cheese, chicken, and eggs. Plant-based sources of tryptophan include soy and seeds, like pumpkin and sesame.

All humans unknowingly experience the effects of tryptophan on a daily basis. That’s because tryptophan is responsible for the production of niacin, melatonin, and serotonin. Tryptophan cannot produce niacin unless the body has enough Vitamin B6, Iron, and Riboflavin, yet the role of niacin as a B vitamin means it’s essential for creating energy from food nutrients.

Melatonin is key for regulating healthy sleep-wake cycles, and serotonin plays a role in both sleep and mood regulation. And since tryptophan is an essential amino acid, low L-tryptophan levels can have serious consequences for the mind and body. The primary side effect is decreased sleep quality and increased risk of mental health and mood disorders, including depression.

Benefits of L-Tryptophan Supplements for Sleep

There are many positive effects of L-tryptophan for sleep. Supplementing with L-tryptophan helps improve sleep because it increases melatonin and serotonin, which work in harmony to regulate a person’s sleep-wake cycle.

A large body of research shows that L-tryptophan can be helpful for improving sleep quality in people of all ages. For example, one study sought to determine if a tryptophan-rich breakfast (along with light therapy) could increase melatonin production to induce better sleep.

The results showed that consuming breakfast cereals high in L-tryptophan increased the efficiency of sleep while helping people sleep for a longer amount of time. The research also showed that L-tryptophan decreased sleeplessness during the night and reduced sleep latency — the amount of time it takes to fall asleep.

Similar results were discovered in a study on L-tryptophan and sleep. This research found that taking L-tryptophan supplements twice a day, at night and in the morning, greatly increased melatonin levels. As a result, subjects had improved sleep-wake cycle regulation and slept better.

Another controlled study on newborns tested the effects of 420 mg of L-tryptophan (per 2.2 lbs of body weight) in a bottle. The babies in this study experienced sleepiness sooner and slept for longer than usual, though pediatric use isn’t recommended.

The recommended dose of L-tryptophan for adults is 8-12 grams per day, and this total amount should be divided across three to four doses per day.

L-Tryptophan for Sleep Disorders

It’s clear that L-tryptophan can be helpful for improving sleep, but what about in the instance of chronic sleep disorders?

Scientific studies demonstrate that taking one gram of L-tryptophan before bed can support improved sleep for people with mild insomnia, while up to 15 grams can support severe insomnia, according to psychiatrist James Lake. He adds that people with sleep disorders, such as sleep apnea and narcolepsy, have reported better sleep quality after taking 400-600 grams of 5-HTP before bed.

These findings suggest that L-tryptophan and 5-HTP, respectively, can be used as sleep aids both in people with mild sleep problems and in those with more serious chronic conditions.

Moreover, since sleep and sleep disorders are often associated with mood disorders like stress and anxiety (insomnia can exacerbate stress and stress can cause insomnia), let’s take a look at the promising effects of 5-HTP and L-tryptophan on mental health.

L-Tryptophan for Mental Health and Mood

Anyone considering L-tryptophan for its mental health benefits should also learn about 5-hydroxytryptophan, or 5-HTP. Both tryptophan and 5-HTP are serotonin precursors, meaning they increase serotonin production — the neurotransmitter that supports healthy mood. Yet, 5-HTP is the version of tryptophan before it has been fully transformed into serotonin, meaning it may have a milder effect.

According to a study on 5-HTP, this amino acid “easily crosses the blood-brain barrier and effectively increases central nervous system (CNS) synthesis of serotonin.” This increase in serotonin levels not only supports sleep and mood regulation, but has also been shown to improve depression, anxiety, aggression, mood swings, and muscle pain.

Scientific evidence shows that, due to its positive effect on serotonin production, 5-HTP can also be effective for treating common disorders like chronic headaches, binge eating, and fibromyalgia. Additional studies show that L-tryptophan can be helpful for depression related to menstruation and premenstrual syndrome.

The standard dose for 5-HTP is between 300-500 mg per day, and all other antidepressant medications or serotonin boosters should be stopped immediately when starting 5-HTP. Taking too many supplements that alter this important brain chemical can cause serotonin syndrome. The most common symptoms of serotonin syndrome include restlessness, confusion, rapid heart rate, sweating, muscle tightness, and dilated pupils.

Side Effects of L-Tryptophan

Most people don’t have any side effects when taking L-tryptophan at recommended doses. However, mild symptoms related to L-tryptophan and 5-HTP have been reported, including drowsiness, nausea, constipation, dry mouth, and blurred vision.

The most serious adverse effect has been the onset of eosinophilia-myalgia syndrome, or EMS. This is a rare disorder caused by an increase in white blood cells (eosinophils), which cause inflammation, swelling, cough, behavioral changes, and digestive issues. This became a concern in 1989 when thousands of individuals reported symptoms of EMS after taking a specific brand of L-tryptophan supplement.

This EMS epidemic led to the ban of L-tryptophan supplements in 1990 by the United States Food and Drug Administration (FDA), yet the ban was lifted in 2005. Scientific reports say that the link between L-tryptophan and EMS was actually due to contamination in the L-tryptophan supplement, rather than the intake of L-tryptophan itself. This is due to the fact that there have been no reported cases of L-tryptophan-related EMS since the reintroduction of the supplement in 2005.

Also remember that dietary supplements of L-tryptophan aren’t regulated by the FDA. If you want to add L-tryptophan to your diet, it’s important to consult a health care professional for medical advice related to your specific needs and circumstances.

Supplementing With L-Tryptophan for Sleep

L-tryptophan supplementation has the potential to improve both sleep and mood.

Numerous studies have demonstrated the positive effects of supplementing with L-tryptophan to boost melatonin and serotonin production, both of which help regulate the sleep-wake cycle and improve sleep. Since both L-tryptophan and 5-HTP help boost serotonin, they’ve also been shown to support mental health conditions like depression.

If you’re considering a supplement for better sleep and you’d like to boost your melatonin levels, consider taking L-tryptophan for sleep. Improving your daily rest through nutrition is just one way to better your overall sleep schedule and understand the role of sleep in your mental and physical health.

Reading time: 5 min

Having trouble sleeping? If you are, you’re not alone. According to the American Sleep Association, anywhere from 50-70 million U.S. adults have a sleeping disorder that prevents them from getting a good night’s sleep. Be it insomnia, snoring, night terrors, or other disorders, sleep problems affect 1 in 3 people at some stage of their life.

So what can we do to combat sleepless nights and sleep disorders? From counting sheep to prescription medications, the various tactics we use to help us sleep are endless. And while lack of sleep may seem like a burden in itself, the truth is that consistent lack of sleep can lead to an increased risk of diseases while impairing mental and physical performance.

Rather than relying on medications or alternative strategies to fall asleep (and stay asleep), research shows that compounds like glycine promote a good night’s sleep, naturally.

As an emerging player in the sleep-supplement realm, glycine treatment can positively impact your sleep quality in many ways. Let’s take a look at what we currently know about glycine, including how it works in our body, and how it can affect our sleep and our health.

What Is Glycine?

As we mentioned when discussing amino acids in the past, glycine is but one of many amino acids that serve as building blocks for life. Amino acids build proteins, synthesize hormones and neurotransmitters, boost performance, improve mood, and beyond.

As data continues to suggest that amino acid supplements are capable of producing health benefits, researchers continue to experiment along the way. So what is glycine exactly, and what makes it so special?

Glycine is an amino acid and neurotransmitter that the body produces from other natural biochemicals that include serine, choline, and threonine, and we consume glycine as well.

We absorb glycine in high-protein foods, such as meat, fish, dairy, eggs, and legumes, but it’s considered a non-essential amino acid because our body can produce it (of the 20 amino acids our body needs to grow and function properly, 11 of these are non-essential).

Yet unlike many amino acids that serve one principal role, glycine is a neurotransmitter with the ability to be both excitatory and inhibitory. This means it can provide the brain and central nervous system with energy, or it can quiet everything down. Glycine is commonly used to improve sleep, enhance memory, and increase insulin sensitivity.

How Does Glycine Work?

 

Now that we’ve come to understand the purpose glycine serves in our body, it’s time to break down exactly how this amino acid works. Like other common amino acids, glycine works as a protein builder in the body, and it’s known primarily for producing collagen.

Collagen is a protein that acts as a primary structural component for tendons, muscles, bones, connective tissue, and skin. And because collagen is the most abundant form of protein that provides our body with structure and strength, it serves a rather important role, all thanks to glycine.

But glycine can do more than simply produce collagen. For instance, it also facilitates the production of creatine, a nutrient that’s stored in the body and used as a form of energy.

Glycine helps breakdown fatty acids in foods, maintains healthy levels of acidity in the digestive tract, regulates blood-sugar levels and moves blood sugar to cells and tissues throughout the body. It also helps regulate the body’s immune response, and even aids in the production of DNA and RNA. Low levels of glycine have been linked to type 2 diabetes while glycine levels that are higher indicate a reduced risk of this metabolic disorder.

Though we consider glycine a non-essential amino acid, clearly it plays an important role in our body’s daily functionality. Yet the reason we find ourselves discussing glycine at length today is because of the pivotal role it plays as a neurotransmitter. Capable of stimulating or inhibiting cells in the brain, glycine can affect mood, cognition, immune function, pain perception, and even sleep.

The use of glycine as a means of influencing and improving sleep can lead to a number of outcomes for the user. For instance, glycine will help you fall asleep more quickly, increase your sleep efficiency, reduce symptoms of insomnia, and improve your overall quality of sleep, which will in turn promote a deeper and more restful sleep.

Research also suggests that, because glycine will help people fall asleep more quickly, it will result in more time in REM sleep, the state of deep sleep in which our body heals and recuperates.

So how does this sleep-promoting amino acid influence sleep in such positive ways? To answer such a question, we must look at the many ways glycine will affect our body when we use it as a supplemental sleep aid.

How Does Glycine Help You Sleep?

After we’ve taken glycine in supplement form, a number of bodily functions that help us sleep will take place. For starters, consuming glycine will lower the core body temperature by increasing blood flow to the extremities. A slight drop in body temperature is a key part of our progression toward sleep, and thus this drop in temperature is a rather pivotal moment as we look for a solid night’s rest.

Glycine will also increase serotonin levels in the body that aid in establishing healthy sleep patterns. Serotonin is a neurotransmitter that aids in the production of melatonin, the famous sleep hormone we often take in supplement form. Studies suggest glycine may even help you bounce back to healthy sleep cycles after a period of disrupted sleep.

The key to this amino acid’s calming effects comes primarily from consuming glycine in supplement form. Let’s take a closer look at what it means to use supplemental glycine.

Using Glycine Supplements

 

Using glycine to aid in sleep performance is as simple as taking a supplement each night before bed. These supplements come in both pill and liquid form, making them widely available to all.

That said, consuming glycine supplements should only occur after consulting with a medical professional. Ideally, a range of 3-5 grams of glycine taken orally before bed has been used to effectively help induce sleep in scientific studies utilizing human volunteers.

Yet as with all supplements or drugs we choose to ingest, side effects may occur along the way. While most individuals tolerate supplemental glycine with no issue, some may experience nausea, vomiting, soft stools, and interactions with other drugs or prescriptions. Meanwhile, doses of glycine consumed during the day may lead to adverse effects like daytime sleepiness.

Should You Take Glycine for Sleep?

Determining whether or not you should take glycine depends on what you hope to gain from its potential. For those seeking the opportunity to fall asleep faster, increase sleep efficiency, and improve their overall quality of sleep, glycine may be high on the list of supplements worth taking. Using a wearable sleep tracker will help you analyze the differences between your sleep patterns with and without glycine.

Before choosing to incorporate glycine into your life, however, it pays to speak with a medical professional. Because the effects of glycine influence each of us differently, ensuring glycine is right for you is of the utmost importance.

If you do incorporate glycine into your life, we hope your nights be filled with restful, healthy sleep.

Did we miss anything?

If you have any questions, suggestions or topic requests, please reach out.